Unknown

Dataset Information

0

Oncolytic reactivation of KSHV as a therapeutic approach for primary effusion lymphoma: high-resolution mapping of BRD4 binding sites in the KSHV genome


ABSTRACT: Primary effusion lymphoma (PEL) is an aggressive subtype of non-Hodgkin lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Currently, treatment options for patients with PEL are limited. Oncolytic viruses have been engineered as anticancer agents and have recently shown increased therapeutic promise. Similarly, lytic activation of endogenous viruses from latently infected tumor cells can also be applied as a cancer therapy. In theory, such a therapeutic strategy would induce oncolysis by viral replication, while simultaneously stimulating an immune response to viral lytic cycle antigens. We examined the combination of the FDA-approved drug ingenol-3-angelate (PEP005) with epigenetic drugs as a rational therapeutic approach for KSHV-mediated malignancies. JQ1, a bromodomain and extra terminal (BET) protein inhibitor, in combination with PEP005, not only robustly induced KSHV lytic replication, but also inhibited IL6 production from PEL cells. Using the dosages of these agents that was found to be effective in reactivating HIV (as a means to clear latent virus with highly active antiretroviral therapy), we were able to inhibit PEL growth in vitro and delay tumor growth in a PEL xenograft tumor model. KSHV reactivation was mediated by activation of NF-kB pathway by PEP005, which led to increased occupancy of RNA polymerase II onto the KSHV 33 genome. RNA-sequencing analysis further revealed cellular targets of PEP005, JQ1, and the synergistic effects of both. Thus, combination of PEP005 with a BET inhibitor may be considered as a rational therapeutic approach for the treatment of PEL.

ORGANISM(S): Homo sapiens

PROVIDER: GSE103395 | GEO | 2017/10/24

SECONDARY ACCESSION(S): PRJNA401678

REPOSITORIES: GEO

Similar Datasets

2017-11-03 | GSE89478 | GEO
2018-10-11 | GSE116650 | GEO
2021-11-08 | GSE179727 | GEO
2020-10-13 | GSE154900 | GEO
2020-03-17 | GSE147063 | GEO
2017-06-10 | GSE90038 | GEO
2013-08-03 | E-GEOD-49506 | biostudies-arrayexpress
2016-01-05 | E-GEOD-70594 | biostudies-arrayexpress
2019-01-09 | GSE123897 | GEO
2016-01-05 | GSE70594 | GEO