Transcriptomics

Dataset Information

0

Role of hypoxia in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL


ABSTRACT: Published molecular profiling studies in patients with lymphoma suggested the influence of hypoxia inducible factor-1 alpha (HIF1α) targets in prognosis of DLBCL. Yet, the role of hypoxia in hematological malignancies remains unclear. We observed that activation of HIF1α resulted in global translation repression during hypoxic stress in DLBCL. Protein translation efficiency as measured using 35S-labeled methionine incorporation revealed a ≥50% reduction in translation upon activation of HIF1α. Importantly, translation was not completely inhibited and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with a decrease in mitochondrial function. Screening of primary DLBCL patient samples revealed that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies demonstrated that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide strong support for the direct contribution of HK2 in B-cell lymphoma development and suggest that HK2 is a key metabolic driver of the DLBCL phenotype.ne incorporation revealed a ≥50% reduction in translation upon activation of HIF1α. Importantly, translation was not completely blunted and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with decrease in mitochondrial function. Screening of DLBCL patient samples identified that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies show that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide more definitive proof of direct contribution of HK2 in development of B-cell lymphoma and suggest that HK2 is a key metabolic driver of DLBCL phenotype.

ORGANISM(S): Homo sapiens

PROVIDER: GSE104212 | GEO | 2018/01/23

REPOSITORIES: GEO

Similar Datasets

2022-12-06 | GSE142123 | GEO
| PRJNA412042 | ENA
2022-02-17 | PXD026726 | Pride
2021-05-28 | GSE175681 | GEO
2009-01-14 | E-GEOD-13818 | biostudies-arrayexpress
2018-03-14 | PXD009009 | Pride
2013-12-10 | E-GEOD-52468 | biostudies-arrayexpress
2009-01-01 | GSE13818 | GEO
2016-01-04 | GSE66750 | GEO
2022-06-08 | GSE149414 | GEO