Unknown

Dataset Information

0

Scc2 Is a Potent Activator of Cohesin's ATPase that Promotes Loading by Binding Scc1 without Pds5


ABSTRACT: In addition to sharing with condensin an ability to organize DNA into chromatids, cohesin regulates enhancer-promoter interactions and confers sister chromatid cohesion. Association with chromosomes is regulated by hook-shaped HEAT repeat proteins that Associate With its Kleisin (Scc1) subunit (HAWKs), namely Scc3, Pds5, and Scc2. Unlike Pds5, Scc2 is not a stable cohesin constituent but, as shown here, transiently displaces Pds5 during loading. Scc1 mutations that compromise its interaction with Scc2 adversely affect cohesin’s ATPase activity, loading, and translocation while Scc2 mutations that alter how the ATPase responds to DNA abolish loading despite cohesin’s initial association with loading sites. Lastly, Scc2 mutations that permit loading in the absence of Scc4 increase Scc2’s association with chromosomal cohesin and reduce that of Pds5. We suggest that cohesin switches between two states, one with Pds5 bound to Scc1 that is not able to hydrolyse ATP efficiently but is capable of release from chromosomes and another in which Scc2, transiently replacing Pds5, stimulates the ATP hydrolysis necessary for loading and translocation away from loading sites.

ORGANISM(S): Nakaseomyces glabratus Saccharomyces cerevisiae mixed sample

PROVIDER: GSE106182 | GEO | 2018/07/17

REPOSITORIES: GEO

Similar Datasets

2021-07-21 | GSE167318 | GEO
2016-02-18 | GSE76890 | GEO
2019-06-06 | GSE132221 | GEO
2016-02-18 | E-GEOD-76890 | biostudies-arrayexpress
2023-08-16 | GSE217833 | GEO
| PRJNA415819 | ENA
2017-01-11 | PXD004692 | Pride
2006-11-05 | GSE4827 | GEO
2015-06-16 | E-GEOD-55357 | biostudies-arrayexpress
2022-02-23 | GSE186987 | GEO