Project description:Proteins encoded by the herpesviridae family members interfere with apoptotic pathways helping the viruses to evade immune surveillance. The aim of the study is to reveal mRNA markers which could be clinically relevant for monitoring of the herpesvirus infections. Majority of the genes being investigated fall within the following categories - death receptors, adaptors, caspases, mitochondrial proteins associated with apoptosis, kinanses involved in apoptosis regulation and execution, splicing factors, transcription factors.
Project description:Peripheral blood is an alternative source of stem/progenitor cells for regenerative medicine owing to its ease of retrieval and blood bank storage. Previous in vitro studies indicated that the conditioned medium derived from peripheral blood mononuclear cells (PBMCs) treated with the iron-quercetin complex (IronQ) contains potent angiogenesis and wound-healing properties. This study aims to unveil the intricate regulatory mechanisms governing the effects of IronQ on the transcriptome profiles of human PBMCs from healthy volunteers and those with diabetes mellitus (DM) using RNA sequencing analysis. Our findings revealed 3741 and 2204 differentially expressed genes (DEGs) when treating healthy and DM PBMCs with IronQ, respectively. Functional enrichment analyses underscored the biological processes shared by the DEGs in both conditions, including inflammatory responses, cell migration, cellular stress responses, and angiogenesis. A comprehensive exploration of these molecular alterations exposed a network of 20 hub genes essential in response to stimuli, cell migration, immune processes, and the mitogen-activated protein kinase (MAPK) pathway. The activation of these pathways enabled PBMCs to potentiate angiogenesis and tissue repair. Corroborating this, quantitative real-time polymerase chain reaction (qRT-PCR) and cell phenotyping confirmed the upregulation of candidate genes associated with anti-inflammatory, pro-angiogenesis, and tissue repair processes in IronQ-treated PBMCs. In summary, combining IronQ and PBMCs brings about substantial shifts in gene expression profiles and activates pathways that are crucial for tissue repair and immune response, which is promising for the enhancement of the therapeutic potential of PBMCs, especially in diabetic wound healing.
Project description:BackgroundBlood is a complex tissue comprising numerous cell types with distinct functions and corresponding gene expression profiles. We attempted to define the cell type specific gene expression patterns for the major constituent cells of blood, including B-cells, CD4+ T-cells, CD8+ T-cells, lymphocytes and granulocytes. We did this by comparing the global gene expression profiles of purified B-cells, CD4+ T-cells, CD8+ T-cells, granulocytes, and lymphocytes using cDNA microarrays.ResultsUnsupervised clustering analysis showed that similar cell populations from different donors share common gene expression profiles. Supervised analyses identified gene expression signatures for B-cells (427 genes), T-cells (222 genes), CD8+ T-cells (23 genes), granulocytes (411 genes), and lymphocytes (67 genes). No statistically significant gene expression signature was identified for CD4+ cells. Genes encoding cell surface proteins were disproportionately represented among the genes that distinguished among the lymphocyte subpopulations. Lymphocytes were distinguishable from granulocytes based on their higher levels of expression of genes encoding ribosomal proteins, while granulocytes exhibited characteristic expression of various cell surface and inflammatory proteins.ConclusionThe genes comprising the cell-type specific signatures encompassed many of the genes already known to be involved in cell-type specific processes, and provided clues that may prove useful in discovering the functions of many still unannotated genes. The most prominent feature of the cell type signature genes was the enrichment of genes encoding cell surface proteins, perhaps reflecting the importance of specialized systems for sensing the environment to the physiology of resting leukocytes.
Project description:To define gene expression profiles that occur during the initial activation of human innate immunity, we administered intravenous endotoxin (n = 8) or saline (n = 4) to healthy subjects and hybridized RNA from blood mononuclear cells (0, 0.5, 6, 24, 168 h) or whole blood (0, 3, 6, 24, 168 h) to oligonucleotide probe arrays. The greatest change in mononuclear cell gene expression occurred at 6 h (439 induced and 428 repressed genes, 1% false discovery rate, and 50% fold change) including increased expression of genes associated with pathogen recognition molecules and signaling cascades linked to receptors associated with cell mobility and activation. Induced defense response genes included cytokines, chemokines, and their respective receptors, acute-phase transcription factors, proteases, arachidonate metabolites, and oxidases. Repressed defense response genes included those associated with co-stimulatory molecules, T and cytotoxic lymphocytes, natural killer (NK) cells, and protein synthesis. Gene expression profiles of whole blood had similar biological themes. Over 100 genes not typically associated with acute inflammation were differentially regulated after endotoxin. By 24 h, gene expression had returned to baseline values. Thus the inflammatory response of circulating leukocytes to endotoxin in humans is characterized by a rapid amplification and subsidence of gene expression. These results indicate that a single intravascular exposure to endotoxin produces a large but temporally short perturbation of the blood transcriptome.