Transcriptomics

Dataset Information

0

Merkel Cells Activate Sensory Neural Pathways through Adrenergic Synapses


ABSTRACT: Epithelial-neuronal signaling is essential for sensory encoding in touch, itch and nociception; however, little is known about the release mechanisms and neurotransmitter receptors through which skin cells govern neuronal excitability. Merkel cells are mechanosensory epidermal cells that have long been proposed to activate neuronal afferents through chemical synaptic transmission. We employed a set of classical criteria for chemical neurotransmission as framework to directly test this hypothesis. RNA sequencing of adult Merkel cells demonstrated that they express presynaptic molecules and biosynthetic machinery for adrenergic transmission. Moreover, live-cell imaging directly demonstrated that Merkel cells mediate activity- and VMAT-dependent release of fluorescent catecholamine neurotransmitter analogues. Touch-evoked firing in Merkel-cell afferents was inhibited either by pre-synaptic silencing of SNARE-mediated vesicle release from Merkel cells or by neuronal deletion of b2-adrenergic receptors. Together, these results identify both pre- and postsynaptic mechanisms through which Merkel cells excite mechanosensory afferents to encode gentle touch.

ORGANISM(S): Mus musculus

PROVIDER: GSE114336 | GEO | 2018/11/08

REPOSITORIES: GEO

Similar Datasets

2017-02-11 | GSE72672 | GEO
2020-05-26 | PXD013434 | Pride
2008-06-11 | E-GEOD-11207 | biostudies-arrayexpress
2021-07-09 | GSE150388 | GEO
2008-04-19 | GSE11207 | GEO
2012-03-03 | E-GEOD-34868 | biostudies-arrayexpress
2017-04-01 | GSE79657 | GEO
2014-12-31 | GSE35148 | GEO
2021-11-02 | GSE168032 | GEO
| PRJNA470987 | ENA