Genomics

Dataset Information

0

Identification of early biological changes in palmitate-treated isolated human islets


ABSTRACT: Background: Long-term exposure to elevated levels of free fatty acids (FFAs) is deleterious for beta-cell function and may contribute to development of type 2 diabetes mellitus (T2DM). Whereas mechanisms of impaired glucose-stimulated insulin secretion (GSIS) in FFA-treated beta-cells have been intensively studied, biological events preceding the secretory failure, when GSIS is accentuated, are poorly investigated. To identify these early events, we performed genome-wide analysis of gene expression in isolated human islets exposed to fatty acid palmitate for different time periods. Results: Palmitate-treated human islets showed decline in beta-cell function starting from day two. Affymetrix Human Transcriptome Array 2.0 identified 903 differentially expressed genes (DEGs). Mapping of the genes onto pathways using KEGG pathway enrichment analysis predicted four islet biology-related pathways enriched prior but not after the decline of islet function and three pathways enriched both prior and after the decline of islet function. DEGs from these pathways were analyzed at the transcript level. The results propose that in palmitate-treated human islets, at early time points, protective events, including up-regulation of metallothioneins, tRNA synthetases and fatty acid-metabolising proteins, dominate over deleterious events, including inhibition of fatty acid detoxification enzymes, which contributes to the enhanced GSIS. After prolonged exposure of islets to palmitate, the protective events are outweighed by the deleterious events, which leads to impaired GSIS. Conclusions: The study identifies temporal order between different cellular events, which either promote or protect from beta-cell failure. The sequence of these events should be considered when developing strategies for prevention and treatment of the disease.

ORGANISM(S): Homo sapiens

PROVIDER: GSE118230 | GEO | 2018/08/19

REPOSITORIES: GEO

Similar Datasets

2014-01-09 | E-GEOD-53949 | biostudies-arrayexpress
2012-05-10 | GSE37852 | GEO
2014-01-09 | GSE53949 | GEO
2012-05-09 | E-GEOD-37852 | biostudies-arrayexpress
2012-02-12 | E-GEOD-29113 | biostudies-arrayexpress
2020-08-13 | GSE156109 | GEO
2008-10-11 | GSE13153 | GEO
2023-08-16 | GSE232750 | GEO
2019-03-15 | GSE124810 | GEO
2019-03-15 | GSE124809 | GEO