Transcriptomics

Dataset Information

0

Fibroblast activation protein restrains adipogenic differentiation and regulates matrix-mediated mTOR signaling


ABSTRACT: Obesity is a risk factor for multiple diseases, including diabetes, cardiovascular disease, and cancer. Within obese adipose tissue, multiple factors contribute to creating a disease-promoting environment, including metabolic dysfunction, inflammation, and fibrosis. Recent evidence points to fibrotic responses, particularly extracellular matrix remodeling, in playing a highly functional role in the pathogenesis of obesity. Fibroblast activation protein plays an essential role in remodeling collagen-rich matrices in the context of fibrosis and cancer. We observed that FAP-null mice have increased weight compared to wild-type controls, and so investigated the role of FAP in regulating diet-induced obesity. Using genetically engineered mouse models and in-vitro cell-derived matrices, we demonstrate that FAP expression by preadipocytes restrains adipogenic differentiation. FAP-mediated matrix remodeling also alters lipid metabolism in part by regulating mTOR signaling. Together, via these mechanisms, FAP confers resistance to diet-induced obesity. The critical role of ECM remodeling in regulating obesity offers new potential targets for therapy.

ORGANISM(S): Mus musculus

PROVIDER: GSE119633 | GEO | 2019/08/02

REPOSITORIES: GEO

Similar Datasets

2018-08-06 | PXD008385 | Pride
2020-01-07 | GSE143168 | GEO
2022-12-31 | GSE190836 | GEO
2022-12-31 | GSE190835 | GEO
2018-09-21 | GSE120243 | GEO
2015-07-01 | E-GEOD-63198 | biostudies-arrayexpress
2014-03-01 | E-GEOD-39549 | biostudies-arrayexpress
2021-04-09 | GSE171710 | GEO
2018-12-19 | PXD004757 | Pride
2018-12-19 | PXD004754 | Pride