Transcriptomics

Dataset Information

0

Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency


ABSTRACT: Around implantation, the epiblast transits from naïve to primed pluripotency, before giving rise to the three germ layers. How chromatin is reconfigured during this developmental window remains poorly understood. We performed a genome-wide investigation of chromatin landscapes during this period. We find that enhancers in ectoderm are already pre-accessible in embryonic day 6.5 (E6.5) Epi when cells enter a primed pluripotent state. Unexpectedly, strong H3K4me3 emerges at developmental gene promoters in E6.5 epiblast and positively correlates with H3K27me3, thus establishing bivalency. These genes also show enhanced spatial interactions. Both the strong bivalency and spatial clustering are virtually absent in preimplantation embryos and are markedly reduced in fate-committed lineages. Finally, we show that KMT2B is essential for establishing bivalent H3K4me3 at E6.5 but becomes partially dispensable later. Its deficiency leads to impaired activation of developmental genes and subsequent embryonic lethality. Thus, our data characterize lineage-specific chromatin reconfiguration and a unique chromatin state for primed pluripotency.

ORGANISM(S): Mus musculus

PROVIDER: GSE125318 | GEO | 2019/12/18

REPOSITORIES: GEO

Similar Datasets

2021-02-19 | GSE154290 | GEO
2020-05-26 | PXD014981 | Pride
2013-11-28 | E-GEOD-52617 | biostudies-arrayexpress
2013-10-29 | E-GEOD-46872 | biostudies-arrayexpress
2020-06-23 | GSE135841 | GEO
2023-12-14 | GSE226041 | GEO
2023-12-14 | GSE226040 | GEO
2023-12-14 | GSE227093 | GEO
2023-12-14 | GSE247461 | GEO
2013-11-28 | GSE52617 | GEO