Project description:We used microarrays to identify genes that are transcriptionally dysregulated between Igf2EpiKO mutants and littermates controls at E19
Project description:We used transcriptome analysis to identify genes transcriptionally disregulated in feto-placental endothelial cells from mutants with conditional deletion of Igf2 gene driven by the Meox2Cre.
Project description:We used transcriptome analysis to identify genes transcriptionally disregulated in feto-placental endothelial cells from mutants with conditional deletion of Igf2 gene driven by the Tek-cre.
Project description:BackgroundEffective fetal growth requires adequate maternal nutrition coupled to active transport of nutrients across the placenta, which, in turn requires ATP. Epidemiological and experimental evidence has shown that impaired maternal nutrition in utero results in an adverse postnatal phenotype for the offspring. Placental mitochondrial function might link maternal food intake to fetal growth since impaired placental ATP production, in response to poor maternal nutrition, could be a pathway linking maternal food intake to reduced fetal growth.MethodWe assessed the effects of maternal diet on placental water content, ATP levels and mitochondrial DNA (mtDNA) content in mice at embryonic (E) day 18 (E18). Females maintained on either low- (LPD) or normal- (NPD) protein diets were mated with NPD males.ResultsFetal dry weight and placental efficiency (embryo/placental fresh weight) were positively correlated (r = 0.53, P = 0.0001). Individual placental dry weight was reduced by LPD (P = 0.003), as was the expression of amino acid transporter Slc38a2 and of growth factor Igf2. Placental water content, which is regulated by active transport of solutes, was increased by LPD (P = 0.0001). However, placental ATP content was also increased (P = 0.03).
Project description:In all eutherian mammals, growth of the fetus is dependent upon a functional placenta, but whether and how the latter adapts to putative fetal signals is currently unknown. Here, we demonstrate, through fetal, endothelial, hematopoietic, and trophoblast-specific genetic manipulations in the mouse, that endothelial and fetus-derived IGF2 is required for the continuous expansion of the feto-placental microvasculature in late pregnancy. The angiocrine effects of IGF2 on placental microvasculature expansion are mediated, in part, through IGF2R and angiopoietin-Tie2/TEK signaling. Additionally, IGF2 exerts IGF2R-ERK1/2-dependent pro-proliferative and angiogenic effects on primary feto-placental endothelial cells ex vivo. Endothelial and fetus-derived IGF2 also plays an important role in trophoblast morphogenesis, acting through Gcm1 and Synb. Thus, our study reveals a direct role for the imprinted Igf2-Igf2r axis on matching placental development to fetal growth and establishes the principle that hormone-like signals from the fetus play important roles in controlling placental microvasculature and trophoblast morphogenesis.
Project description:Cadmium (Cd) is a ubiquitous environmental contaminant implicated as a developmental toxicant, yet the underlying mechanisms that confer this toxicity are unknown. Mother-infant pairs from a Rhode Island birth cohort were investigated for the potential effects of maternal Cd exposure on fetal growth, and the possible role of the PCDHAC1 gene on this association. Mothers with higher toenail Cd concentrations were at increased odds of giving birth to an infant that was small for gestational age or with a decreased head circumference. These associations were strongest amongst those with low levels of DNA methylation in the promoter region of placental PCDHAC1. Further, we found placental PCDHAC1 expression to be inversely associated with maternal Cd, and PCDHAC1 expression positively associated with fetal growth. Our findings suggest that maternal Cd affects fetal growth even at very low concentrations, and some of these effects may be due to the differential expression of PCDHAC1.