Genomics

Dataset Information

0

Evaluation of the amplicons for SNP typing (allele bias) and locus bias using Illumina 550-Duo BeadChip


ABSTRACT: Highly specific amplification of complex DNA pools without bias or template-independent products (TIPs) remains a challenge. We have developed a procedure using phi29 DNA polymerase and trehalose and optimized control of amplification to create micrograms of specific amplicons without TIPs from down to sub-femtograms of DNA. The amplicons from 5 ng and 0.5 ng DNA, which were from originally good quality of gDNA (05-050), or partially degraded gDNA (04-018), were validate with Illumina HumanHap550-Duo Genotyping Beadchip. As seen in (Suppl. Table 5a), the call rates (97.30% to 99.07%) and accuracy or concordance ( > 99.85% for the SNPs called in both amplicon and natural reference) for 5 ng derived amplicons with both Wpa and Gv2 were close to each other and close to native gDNA (call rate: 98.3% to 99.75%). These call rates were better than a recent report (amplicon 95.9% vs. un-amplified 98.5%), in which the early kit Repli-g 625S was applied, and re-genotyping was performed when the performance was low and duplicate samples were filtered for the highest call rate. The genotyping accuracy of Wpa was actually in the same range as the variation in technical replicates with similar SNP typing arrays (99.87% and 99.88%, replicated Affymetrix array, or between Affymetrix and Illumina arrays). Importantly, the genotyping concordance for amplicons generated from 0.5 ng with Wpa (99.88% and 99.69%) were also close to the technical replicates. In this case, the call rates of Wpa were slightlyreduced compared to that with 5 ng input, but the call rate for the partially degraded sample 04-018, was modestly improved over Gv2 (92.06 % vs. 90.53%). Wpa data also showed some amplification non-uniformity among different locations, resulting in some “artificial CNVs” similar to Gv2 (exampled as in Suppl. Fig. 5 and Suppl. Table 6), with the outputs obtained by taking unamplified gDNAs as their reference. This imbalance however was consistent and reproducible for each method but different between Wpa and Gv2. These artificial CNVs can be efficiently cancelled if pair-wise amplified test and reference are compared, as observed in CGH result (Fig. 4 and Suppl. Fig. 4), also supported by others {Pugh 2008}. It is interesting to note that the representation of chromosomal terminal sequences was greatly improved with Wpa compared with Gv2 (Fig. 5), and that some of these regions were significantly under-amplified or even lost with Gv2 (Suppl. Fig. 5 and Suppl. Table 6, 7), as also independently reported recently {Pugh 2008}. This occurred especially in the terminal 3 to 5 Mb and sometimes extended to 10 Mb in many chromosome termini, and was particularly serious when low levels or degraded DNA was as input. An analysis for 5 Mb termini is shown (Suppl. Table 5b calculated all involved SNPs as a cohort. Fig. 5 and Suppl. Tables 6 and 7 were the result for each chromosome terminus). Importantly, the SNP typing was also greatly improved, outstandingly exemplified by the amplicons of 0.5 ng input for the partially degraded 04-018, with Wpa versus Gv2 call rate of 91.9% vs. 84.45% and accuracy of 99.57% vs. 98.62%. The result also showed that these terminal regions underrepresentation in Gv2 was not absolutely associated with the distance-to-end, but possibly was a sequence related issue. Keywords: Whole-pool amplification, whole genome SNP typing

ORGANISM(S): Homo sapiens

PROVIDER: GSE12732 | GEO | 2008/09/24

SECONDARY ACCESSION(S): PRJNA114241

REPOSITORIES: GEO

Similar Datasets

2010-06-25 | E-GEOD-12732 | biostudies-arrayexpress
2008-09-24 | GSE12731 | GEO
2022-02-03 | GSE195814 | GEO
2019-07-19 | GSE116117 | GEO
2014-05-15 | GSE57685 | GEO
2008-07-25 | GSE11957 | GEO
2014-05-15 | E-GEOD-57685 | biostudies-arrayexpress
2018-03-19 | PXD008088 | Pride
| PRJNA655397 | ENA
2024-01-17 | PXD048363 | Pride