Genomics

Dataset Information

0

Precise small molecule cleavage of a r(CUG) repeat expansion in a myotonic dystrophy mouse model


ABSTRACT: Myotonic dystrophy type 1 (DM1) is an incurable neuromuscular disorder caused by an expanded CTG repeat that is transcribed into r(CUG)exp. The RNA repeat expansion sequesters regulatory proteins such as Muscleblind-like protein 1 (MBNL1), which causes pre-mRNA splicing defects. The disease-causing r(CUG)exp has been targeted by antisense oligonucleotides, CRISPR-based approaches, and RNA-targeting small molecules. Herein, we describe a designer small molecule, Cugamycin, that targets the structure of r(CUG)exp and cleaves it in cells and in vivo. Cugamycin selectively cleaves r(CUG)exp while leaving short repeats of r(CUG) untouched. In contrast, oligonucleotides that recognize r(CUG) sequence rather than structure cleave both long and short r(CUG)-containing transcripts. In the HSALR mouse model of DM1, Cugamycin selectively ablates r(CUG)exp in disease-affected muscle. Transcriptomic, histological, and phenotypic studies demonstrate that Cugamycin broadly and specifically relieves DM1-associated defects without detectable off-targets. Thus, small molecules that bind and cleave RNA may have utility as lead chemical probes and medicines.

ORGANISM(S): Mus musculus

PROVIDER: GSE127809 | GEO | 2019/03/22

REPOSITORIES: GEO

Similar Datasets

2023-05-02 | PXD024107 | Pride
2021-01-31 | GSE158216 | GEO
2012-06-27 | E-GEOD-38962 | biostudies-arrayexpress
2012-06-28 | GSE38962 | GEO
2021-03-26 | PXD025011 | Pride
2019-11-22 | GSE128844 | GEO
2019-07-27 | GSE134926 | GEO
2023-10-31 | GSE164057 | GEO
2018-07-15 | GSE108590 | GEO
2018-07-15 | GSE108589 | GEO