Genomics

Dataset Information

0

Exploring the var gene interactome with CRISPR/dCas9


ABSTRACT: Epigenetic regulation of mutually exclusive transcription within the var gene family is important for infection and pathogenesis of the malaria parasite Plasmodium falciparum. var genes are kept transcriptionally silent via heterochromatic clusters located at the nuclear periphery; however, only a few proteins have been shown to play a direct role in var gene transcriptional regulation. Importantly, the chromatin components that contribute to var gene nuclear organization remain unknown. Here, we adapted a CRISPR-based immunoprecipitation-mass spectrometry approach for de novo identification of factors associated with specific transcriptional regulatory sequences of var genes. Tagged, catalytically inactive Cas9 (“dCas9”) was targeted to var gene promoters or introns, cross-linked, and immunoprecipitated with all DNA, proteins, and RNA associated with the targeted locus. Chromatin immunoprecipitation followed by sequencing demonstrated that genome-wide dCas9 binding was specific and robust. Proteomics analysis of dCas9-immunoprecipitates identified specific proteins for each target region, including known and novel factors such as DNA binding proteins, chromatin remodelers, and structural proteins. We also demonstrate the ability to immunoprecipitate RNA that is closely associated to the targeted locus. Our CRISPR/dCas9 study establishes a new tool for targeted purification of specific genomic loci and advances understanding of virulence gene regulation in the human malaria parasite.

ORGANISM(S): Plasmodium falciparum

PROVIDER: GSE129397 | GEO | 2020/05/01

REPOSITORIES: GEO

Similar Datasets

2020-07-15 | PXD013131 | Pride
2010-05-06 | E-GEOD-17029 | biostudies-arrayexpress
2017-01-18 | GSE68667 | GEO
2009-09-03 | GSE17029 | GEO
2013-05-25 | GSE47349 | GEO
2022-12-16 | GSE169028 | GEO
2022-12-16 | GSE169027 | GEO
2022-12-16 | GSE193761 | GEO
2020-11-02 | GSE156102 | GEO
2017-07-17 | MSV000081339 | MassIVE