ChIP-seq analysis of BRD4, MED1 and P65 in SCC1 cells after JQ1 treatment
Ontology highlight
ABSTRACT: To explore genome-wide alteration of BRD4, MED1, p65 and H3K27Ac during BET inhibition, we performed chromatin immunoprecipitation sequencing (ChIP-seq) of SCC1 cells to examine genome-wide recruitment of the MED1, BRD4, p65 and H3K27ac following JQ1 treatment. BET inhibition by JQ1 led to dramatically loss of the recruitment of MED1, BRD4 and p65 at a cohort of key oncogenes associate with tumorigenesis and metastasis. Suggesting BET inhibition is effective strategy to suppress the tumorigenesis and metastasis of head and neck squamous cell carcinoma.
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. ChIP-seq in parental and JQ1 resistant triple negative breast cancer (TNBC) in response to DMSO or JQ1 treatment
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. RNA-Seq in parental and JQ1 resistant triple negative breast cancer (TNBC) in response to DMSO or JQ1 treatment over time
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. Chem-Seq in parental and JQ1 resistant triple negative breast cancer (TNBC)
Project description:Men who develop metastatic castration-resistant prostate cancer (CRPC) invariably succumb to the disease. The development and progression to CRPC following androgen ablation therapy is predominantly driven by unregulated androgen receptor (AR) signaling1-3. Despite the success of recently approved therapies targeting AR signaling such as abiraterone4-6 and second generation anti-androgens MDV3100 (enzalutamide)7,8, durable responses are limited, presumably due to acquired resistance. Recently JQ1 and I-BET, two selective small molecule inhibitors that target the amino-terminal bromodomains of BRD4, have been shown to exhibit antiproliferative effects in a range of malignancies9-12. Here we show that AR signaling-competent CRPC cell lines are preferentially sensitive to BET bromodomain inhibition. BRD4 physically interacts with the N-terminal domain of AR and can be disrupted by JQ111,13. Like the direct AR antagonist, MDV3100, JQ1 disrupted AR recruitment to target gene loci. In contrast to MDV3100, JQ1 functions downstream of AR, and more potently abrogated BRD4 localization to AR target loci and AR mediated gene transcription including induction of TMPRSS2-ERG and its oncogenic activity. In vivo, BET bromodomain inhibition was more efficacious than direct AR antagonism in CRPC xenograft models. Taken together, these studies provide a novel epigenetic approach for the concerted blockade of oncogenic drivers in advanced prostate cancer. Examination of AR, BRD2, BRD3, BRD4, ERG, RNA Pol II and H3K27ac in prostate cancer cells with respect to BET inhibitors
Project description:Following the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukemia (AML), BET inhibitors are being explored as promising therapeutic avenue in numerous cancers. While clinical trials have reported single-agent activity in advanced hematologic malignancies, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukemia, we performed a chromatin-focused shRNAmir screen in a sensitive MLL/AF9; NrasG12D‑driven AML model, and investigated dynamic transcriptional profiles in sensitive and resistant murine and human leukemias. Our screen reveals that suppression of the PRC2 complex, contrary to effects in other contexts, promotes BET resistance in AML. PRC2 suppression does not directly affect the regulation of Brd4-dependent transcripts, but facilitates the remodeling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggers acute MYC repression in human leukemias regardless of their sensitivity, resistant leukemias are uniformly characterized by their ability to rapidly restore MYC transcription. This process involves the activation and recruitment of WNT signaling components, which compensate for the loss of BRD4 and drive resistance in various cancer models. Dynamic ChIP- and STARR-seq enhancer profiles reveal that BET-resistant states are characterized by remodeled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Together, our results identify and validate WNT signaling as a driver and candidate biomarker of primary and acquired BET resistance in leukemia, and implicate the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies. RNA-Seq of DMSO- or JQ1-treated cancer cell lines; ChIP-seq for H3K36me3 and H3K27me3 in a leukemia cell line treated either with DMSO or JQ1, ChIP-seq for H3K27ac in resistant and sensitive mouse and human leukemia. Functional enhancer mapping (STARR-seq) in K-562 treated either with DMSO or JQ1.
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance.
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance.
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance.
Project description:Men who develop metastatic castration-resistant prostate cancer (CRPC) invariably succumb to the disease. The development and progression to CRPC following androgen ablation therapy is predominantly driven by unregulated androgen receptor (AR) signaling. Despite the success of recently approved therapies targeting AR signaling, such as abiraterone and second-generation anti-androgens MDV3100 (enzalutamide), durable responses are limited, presumably due to acquired resistance. Recently, JQ1 and I-BET, two selective small molecule inhibitors that target the amino-terminal bromodomains of BRD4, have been shown to exhibit antiproliferative effects in a range of malignancies. Here we show that AR signaling-competent CRPC cell lines are preferentially sensitive to BET bromodomain inhibition. BRD4 physically interacts with the N-terminal domain of AR and can be disrupted by JQ1. Like the direct AR antagonist, MDV3100, JQ1 disrupted AR recruitment to target gene loci. In contrast to MDV3100, JQ1 functions downstream of AR, and more potently abrogated BRD4 localization to AR target loci and AR mediated gene transcription including induction of TMPRSS2-ERG and its oncogenic activity. In vivo, BET bromodomain inhibition was more efficacious than direct AR antagonism in CRPC xenograft models. Taken together, these studies provide a novel epigenetic approach for the concerted blockade of oncogenic drivers in advanced prostate cancer. Examination of ASH2L genome-wide binding in prostate cancer cells after AR stimulation.