Project description:Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer, is characterized by loss of AR signaling and resulting resistance to AR-targeted therapy during neuroendocrine transdifferentiation, for which the molecular mechanisms remain unclear. Here, we report that neuropilin 2 (NRP2) is upregulated in both de novo and therapy-induced NEPC, which induces neuroendocrine markers, neuroendocrine cell morphology, and NEPC cell aggressive behavior. NRP2 silencing restricted NEPC tumor xenograft growth. Mechanistically, NRP2 engages in reciprocal crosstalk with AR, where NRP2 is transcriptionally inhibited by AR, and in turn suppresses AR signaling by downregulating the AR transcriptional program and confers resistance to enzalutamide. Moreover, NRP2 physically interacts with VEGFR2 through the intracellular SEA domain to activate STAT3 phosphorylation and subsequently SOX2, thus driving NEPC differentiation and growth. Collectively, these results characterize NRP2 as a driver of NEPC and suggest NRP2 as a potential therapeutic target in NEPC.
Project description:Despite recent therapeutic advances, prostate cancer remains a leading cause of cancer-related death. A subset of castration resistant prostate cancers become androgen receptor (AR) signaling-independent and develop neuroendocrine prostate cancer (NEPC) features through lineage plasticity. These NEPC tumors, associated with aggressive disease and poor prognosis, are driven, in part, by aberrant expression of N-Myc, through mechanisms that remain unclear. Integrative analysis of the N-Myc transcriptome, cistrome and interactome using in vivo, in vitro and ex vivo models (including patient-derived organoids) identified a lineage switch towards a neural identity associated with epigenetic reprogramming. N-Myc and known AR-co-factors (e.g., FOXA1 and HOXB13) overlapped, independently of AR, at genomic loci implicated in neural lineage specification. Moreover, histone marks specifically associated with lineage-defining genes were reprogrammed by N-Myc. We also demonstrated that the N-Myc-induced molecular program accurately classifies our cohort of patients with advanced prostate cancer. Finally, we revealed the potential for EZH2 inhibition to reverse the N-Myc-induced suppression of epithelial lineage genes. Altogether, our data provide insights on how N-Myc regulates lineage plasticity and epigenetic reprogramming associated with lineage-specification. The N-Myc signature we defined could also help predict the evolution of prostate cancer and thus better guide the choice of future therapeutic strategies.
Project description:The widespread use of potent androgen receptor signaling inhibitors (ARSIs) has led to an increasing emergence of AR-independent castration-resistant prostate cancer (CRPC), typically driven by loss of AR expression, lineage plasticity, and transformation to prostate cancers (PCs) that exhibit phenotypes of neuroendocrine or basal-like cells. The anti-apoptotic protein BCL2 is upregulated in neuroendocrine cancers and may be a therapeutic target for this aggressive PC disease subset. There is an unmet clinical need, therefore, to clinically characterize BCL2 expression in metastatic CRPC (mCRPC), determine its association with AR expression, uncover its mechanisms of regulation, and evaluate BCL2 as a therapeutic target and/or biomarker with clinical utility. Here, using multiple PC biopsy cohorts and models, we demonstrate that BCL2 expression is enriched in AR-negative mCRPC, associating with shorter overall survival and resistance to ARSIs. Moreover, high BCL2 expression associates with lineage plasticity features and neuroendocrine marker positivity. We provide evidence that BCL2 expression is regulated by DNA methylation, associated with epithelial-mesenchymal transition, and increased by the neuronal transcription factor ASCL1. Finally, BCL2 inhibition had antitumor activity in some, but not all, BCL2-positive PC models, highlighting the need for combination strategies to enhance tumor cell apoptosis and enrich response.
Project description:PlexinD1 is an axon guidance molecule which is upregulated in neuroendocrine prostate cancer (PC). In order to better understand its role in mediating the development and disease progression in PC, we performed the RNA-seq in PC cells in lack of or with enforced PlexinD1 expression comparing to the control cells. We compared the gene expression profile and conducted downstream pathway analysis. Our data dememstrated that PlexinD1 regulates the cell lineage in castration-resistant PC by activating Gli1 signaling.
Project description:Epigenetic regulation profoundly influences the fate of cancer cells and their capacity to switch between lineages by modulating essential gene expression, thereby shaping tumor heterogeneity and therapy response. In castration-resistant prostate cancer (CRPC), the intricacies behind androgen receptor (AR)-independent lineage plasticity remain unclear, leading to a scarcity of effective clinical treatments. Utilizing single-cell RNA sequencing on both human and mouse prostate cancer samples, combined with whole-genome bisulfite sequencing and multiple genetically engineered mouse models, we investigated the molecular mechanism of AR-independent lineage plasticity and uncovered a potential therapeutic strategy. Single-cell transcriptomic profiling of human prostate cancers, both pre- and post-androgen deprivation therapy, revealed an association between liver kinase B1 (LKB1) pathway inactivation and AR independence. LKB1 inactivation led to AR-independent lineage plasticity and global DNA hypomethylation during prostate cancer progression. Importantly, the pharmacological inhibition of TET enzymes and supplementation with S-adenosyl methionine were found to effectively suppress AR-independent prostate cancer growth. These insights shed light on the mechanism driving AR-independent lineage plasticity and propose a potential therapeutic strategy by targeting DNA hypomethylation in AR-independent CRPC.
Project description:Some cancers evade targeted therapies through a mechanism known as lineage plasticity, whereby tumor cells acquire phenotypic characteristics of a cell lineage whose survival no longer depends on the drug target. We use in vitro and in vivo human prostate cancer models to show that these tumors can develop resistance to the antiandrogen drug enzalutamide by a phenotypic shift from androgen receptor (AR)-dependent luminal epithelial cells to AR-independent basal-like cells. This lineage plasticity is enabled by the loss of TP53 and RB1 function, is mediated by increased expression of the reprogramming transcription factor SOX2, and can be reversed by restoring TP53 and RB1 function or by inhibiting SOX2 expression. Thus, mutations in tumor suppressor genes can create a state of increased cellular plasticity that, when challenged with antiandrogen therapy, promotes resistance through lineage switching.