Transcriptomics

Dataset Information

0

Transcriptomic Analysis Reveals Flavonoid Biosynthesis of Syringa oblata Lindl. in Response to Different Light Intensity


ABSTRACT: Background: Hazy weather significantly increase air pollution and affect light intensity which may also affect medicinal plants growth. Syringa oblata Lindl. (S. oblata), an effective anti-biofilm medicinal plants, is also vulnerable to changes in plant photoperiods and other abiotic stress responses. Rutin, one of the flavonoids, is the main bioactive ingredient in S. oblata that inhibits Streptococcus suis biofilm formation. Thus, the present study aims to explore the biosynthesis and molecular basis of flavonoids in S. oblata in response to different light intensity. Results: In this study, it was shown that compared with natural (Z0) and 25% ~ 35% (Z2) light intensities, the rutin content of S. oblata under 50% ~ 60% (Z1) light intensity increased significantly. In addition, an integrated analysis of metabolome and transcriptome was performed using light intensity stress from two kinds of light intensities which S. oblata was subjected to: Z0 and Z1. The results revealed that differential metabolites and genes were mainly related to the flavonoid biosynthetic pathway. We found out that 13 putative structural genes and a transcription factor bHLH were significantly up-regulated in Z1. Among them, integration analysis showed that 3 putative structural genes including 4CL1, CYP73A and CYP75B1 significantly up-regulated the rutin biosynthesis, suggesting that these putative genes may be involved in regulating the flavonoid biosynthetic pathway, thereby making them key target genes in the whole metabolic process. Conclusions: The present study provided helpful information to search for the novel putative genes that are potential targets for S. oblata in response to light intensity.

OTHER RELATED OMICS DATASETS IN: MTBLS2074

ORGANISM(S): Syringa oblata

PROVIDER: GSE137862 | GEO | 2019/11/25

REPOSITORIES: GEO

Similar Datasets

2018-08-17 | GSE118650 | GEO
2022-10-05 | GSE214641 | GEO
2021-05-16 | GSE114544 | GEO
2020-12-14 | MTBLS962 | MetaboLights
2015-03-01 | GSE59544 | GEO
2020-12-31 | GSE107913 | GEO
2023-11-02 | GSE190279 | GEO
2022-10-19 | GSE184873 | GEO
2022-10-19 | GSE184872 | GEO
2019-05-05 | ST001194 | MetabolomicsWorkbench