Other

Dataset Information

0

From coarse to fine: The absolute Escherichia coli proteome under diverse growth conditions


ABSTRACT: Accurate measurements of cellular protein concentrations are invaluable to quantitative studies of gene expression and physiology in living cells. Here, we developed a versatile mass spectrometric workflow based on data-independent acquisition proteomics (DIA/SWATH) together with a novel protein inference algorithm (xTop). We used this workflow to accurately quantify absolute protein abundances in E. coli for >2000 proteins over >60 growth conditions, including nutrient limitations, non-metabolic stresses and non-planktonic states. The resulting high-quality dataset of protein mass fractions allowed us to characterize proteome responses from a coarse (groups of related proteins) to a fine (individual) protein level. Hereby, a plethora of novel biological findings could be elucidated, including the generic upregulation of low-abundant proteins under various metabolic limitations, the non-specificity of catabolic enzymes upregulated under carbon limitation, the lack of large-scale proteome reallocation under stress compared to nutrient limitations, as well as surprising strain-dependent effects important for biofilm formation. These results present valuable resources for the systems biology community and can be used for future multi-omics studies of gene regulation and metabolic control in E. coli.

ORGANISM(S): Escherichia coli Escherichia coli str. K-12 substr. MG1655

PROVIDER: GSE139983 | GEO | 2021/04/06

REPOSITORIES: GEO

Similar Datasets

2021-03-11 | PXD014948 | Pride
2022-01-12 | PXD017258 | panorama
2019-04-18 | GSE128812 | GEO
2019-07-01 | GSE122971 | GEO
2024-03-28 | GSE226936 | GEO
2018-08-01 | GSE72020 | GEO
2019-08-28 | GSE133753 | GEO
2014-03-31 | E-GEOD-53333 | biostudies-arrayexpress
2018-12-21 | GSE113716 | GEO
2023-11-21 | GSE228556 | GEO