Genomics

Dataset Information

0

A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos


ABSTRACT: Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryogenesis. Here, we report on the epigenetic and transcriptome genome-wide maps of gastrula-stage Xenopus tropicalis embryos using massive parallel sequencing of cDNA (RNA-seq) and DNA obtained by chromatin immunoprecipitation (ChIP-seq) of histone H3 K4 and K27 trimethylation and RNA Polymerase II (RNAPII). These maps identify promoters and transcribed regions. Strikingly, genomic regions featuring opposing histone modifications are mostly transcribed, reflecting spatially regulated expression rather than bivalency as determined by expression profile analyses, sequential ChIP, and ChIP-seq on dissected embryos. Spatial differences in H3K27me3 deposition are predictive of localized gene expression. Moreover, the appearance of H3K4me3 coincides with zygotic gene activation, whereas H3K27me3 is predominantly deposited upon subsequent spatial restriction or repression of transcriptional regulators. These results reveal a hierarchy in the spatial control of zygotic gene activation.

ORGANISM(S): Xenopus tropicalis

PROVIDER: GSE14025 | GEO | 2009/09/15

SECONDARY ACCESSION(S): PRJNA112449

REPOSITORIES: GEO

Similar Datasets

2009-09-15 | E-GEOD-14025 | biostudies-arrayexpress
2015-12-15 | E-GEOD-67974 | biostudies-arrayexpress
2019-07-05 | GSE124718 | GEO
2010-06-30 | E-TABM-533 | biostudies-arrayexpress
2007-05-23 | GSE7815 | GEO
2015-03-19 | E-MTAB-2950 | biostudies-arrayexpress
2007-02-07 | GSE6981 | GEO
2011-12-02 | E-GEOD-27314 | biostudies-arrayexpress
2015-12-15 | GSE67974 | GEO
2013-07-26 | E-GEOD-41700 | biostudies-arrayexpress