Genomics

Dataset Information

0

ZRSR1 cooperates with ZRSR2 in regulating splicing of U12-type introns in murine hematopoietic cells


ABSTRACT: Recurrent loss-of-function mutations of spliceosome gene, ZRSR2, occur in myelodysplastic syndromes (MDS). Mutation/loss of ZRSR2 in human myeloid cells primarily causes impaired splicing of the U12-type introns. To investigate further the role of this splice factor in splicing and hematopoietic development, we generated mice lacking ZRSR2. Unexpectedly, Zrsr2-deficient mice developed normal hematopoiesis with no abnormalities in myeloid differentiation evident in either young or ≥1-year old knockout mice. Repopulation ability of Zrsr2-deficient hematopoietic stem cells was also unaffected in reconstitution assays. Myeloid progenitors lacking ZRSR2 exhibited mis-splicing of U12-type introns, however, this phenotype was moderate compared to the ZRSR2-deficient human cells. Our investigations revealed that a closely related homolog, Zrsr1, expressed in the murine hematopoietic cells, but not human, contributes to splicing of U12-type introns. Depletion of Zrsr1 in Zrsr2 KO myeloid cells exacerbated retention of the U12-type introns, thus highlighting a collective role of ZRSR1 and ZRSR2 in murine U12-spliceosome. We also demonstrate that aberrant retention of U12-type introns of MAPK9 and MAPK14 leads to their reduced protein expression. Overall, our findings highlight that both ZRSR1 and ZRSR2 are functional components of the murine U12-spliceosome, and depletion of both proteins is required to model accurately ZRSR2-mutant MDS in mice.

ORGANISM(S): Mus musculus

PROVIDER: GSE152432 | GEO | 2022/03/09

REPOSITORIES: GEO

Similar Datasets

2023-05-29 | GSE151471 | GEO
2022-03-09 | GSE151470 | GEO
2015-01-15 | E-GEOD-63816 | biostudies-arrayexpress
2015-01-15 | GSE63816 | GEO
2022-05-24 | GSE203531 | GEO
2022-09-28 | GSE193365 | GEO
| PRJNA639332 | ENA
2021-02-09 | GSE149455 | GEO
2020-11-26 | GSE162136 | GEO
| PRJNA635920 | ENA