Project description:Aristolochic acid nephropathy (AAN) is characterised by rapidly progressive tubulointerstitial nephritis culminating in end stage renal failure and urothelial malignancy. microRNAs (miRs) are small endogenous post-transcriptional regulators of gene expression implicated in numerous physiological and pathological processes. We aimed to characterise the mechanism of AA induced cell cycle arrest and its regulation by miRs. The microarray experiment was performed to identify differentially regulated microRNAs in human proximal tubulal epithelial cells treated with aristolochic acid (AA). Analysis or differential miR expression in human proximal tubular epithelial cell line (HK-2) treated with 5ug/ml aristolochic acid, control (n=3) vs aristolochic acid (n=3)
Project description:In order to identify the effects of OCRL depletion on the proximal tubular renal cells transcriptome, we performed Affymetrix Gene-Chip hybridization experiments Transcriptome analysis of the proximal tubular cells depleted of OCRL
Project description:Induced renal epithelial cells were obtained by direct reprogramming of murine fibroblasts. Their expression profile was compared to control fibroblasts and primary renal tubular epithelial cells.
Project description:The mechanistic target of rapamycin mTORC1 is a key regulator of cell metabolism and autophagy. Despite widespread clinical use of mTOR inhibitors, the role of mTORC1 in renal tubular function and kidney homeostasis remains elusive. By utilizing constitutive and inducible deletion of conditional Raptor alleles in renal tubular epithelial cells, we discovered that mTORC1 deficiency caused a marked concentrating defect, loss of tubular cells and slowly progressive renal fibrosis. Transcriptional profiling revealed that mTORC1 maintains renal tubular homeostasis by controlling mitochondrial metabolism and biogenesis as well as transcellular transport processes involved in counter-current multiplication and urine concentration. Although mTORC2 partially compensated the loss of mTORC1, exposure to ischemia and reperfusion injury exaggerated the tubular damage in mTORC1-deficient mice, and caused pronounced apoptosis, diminished proliferation rates and delayed recovery. These findings identify mTORC1 as an essential regulator of tubular energy metabolism and as a crucial component of ischemic stress responses. Pharmacological inhibition of mTORC1 likely affects tubular homeostasis, and may be particularly deleterious if the kidney is exposed to acute injury. Furthermore, the combined inhibition of mTORC1 and mTORC2 may increase the susceptibility to renal damage. Raptor fl/fl*KspCre and Raptor fl/fl animals were sacrificed at P14 before the development of an overt functional phenotype. Kidneys were split in half and immediately snap frozen in liquid nitrogen.
Project description:The mechanistic target of rapamycin mTORC1 is a key regulator of cell metabolism and autophagy. Despite widespread clinical use of mTOR inhibitors, the role of mTORC1 in renal tubular function and kidney homeostasis remains elusive. By utilizing constitutive and inducible deletion of conditional Raptor alleles in renal tubular epithelial cells, we discovered that mTORC1 deficiency caused a marked concentrating defect, loss of tubular cells and slowly progressive renal fibrosis. Transcriptional profiling revealed that mTORC1 maintains renal tubular homeostasis by controlling mitochondrial metabolism and biogenesis as well as transcellular transport processes involved in counter-current multiplication and urine concentration. Although mTORC2 partially compensated the loss of mTORC1, exposure to ischemia and reperfusion injury exaggerated the tubular damage in mTORC1-deficient mice, and caused pronounced apoptosis, diminished proliferation rates and delayed recovery. These findings identify mTORC1 as an essential regulator of tubular energy metabolism and as a crucial component of ischemic stress responses. Pharmacological inhibition of mTORC1 likely affects tubular homeostasis, and may be particularly deleterious if the kidney is exposed to acute injury. Furthermore, the combined inhibition of mTORC1 and mTORC2 may increase the susceptibility to renal damage.
Project description:Renal epithelial cells are exposed to mechanical forces due to flow-induced shear stress within the nephrons. We applied RNA sequencing to get a comprehensive overview of fluid-shear regulated genes and pathways in the immortalized renal proximal tubular epithelial cell line. Cells were exposed to laminar fluid shear stress (1.9 dyn/cm2) in a cone-plate device and compared to static controls.
Project description:GPX3 is primarily synthesized and secreted by renal tubular epithelial cells and serves as the main source of GPX3 in plasma. A portion of GPX3 adheres to the renal basement membrane, suggesting that GPX3 may also regulate renal cell physiological functions. Our previous work has found that GPX3 expression is downregulated in the renal tubular epithelial cells of mice that have undergone ischemia-reperfusion-induced acute kidney injury, but the specific impact of this downregulation remains unclear. To address this, we constructed mice with specific deletion of GPX3 in renal tubular epithelial cells and subjected them to ischemia-reperfusion modeling. We reported the protective role of native GPX3 in the kidneys under IRI-AKI conditions in mitigating oxidative stress and mitochondrial damage in tubular epithelial cells. The deletion of GPX3 in tubular epithelial cells exacerbated oxidative stress, apoptosis, and mitochondrial dysfunction in IRI-AKI. Renal cortex tissue from control and IRI-modeled mice was used for RNA sequencing. Overall, our data provide an overview of the genetic changes in the kidneys of mice with GPX3 knockout in both non-modeled and IRI-AKI-modeled conditions, laying the groundwork for studying the specific mechanisms by which GPX3 regulates renal function.
Project description:The impact of canagliflozin on gene expression changes was investigated in human renal proximal tubular cells (HK2) after pre-treatment with high glucose.
Project description:Pkd1-/- renal epithelial cells are exposed to mechanical forces due to flow-induced shear stress within the nephrons. We applied RNA sequencing to get a comprehensive overview of fluid-shear regulated genes and pathways in the immortalized Pkd1-/- renal proximal tubular epithelial cell line. Cells were exposed to laminar fluid shear stress (1.9 dyn/cm2) in a cone-plate device and compared to static controls.