Genomics

Dataset Information

0

Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients


ABSTRACT: Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li responsive (LR) and Li non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/β-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/β-catenin signaling pathway by inhibiting GSK-3β and releasing β-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/β-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3β, upregulated LEF1 and Wnt/β-catenin gene targets, increased transcriptional activity of complex β-catenin/TCF/LEF1 and reduced excitability in NR neurons. Additionally, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/β-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment.

ORGANISM(S): Homo sapiens

PROVIDER: GSE159487 | GEO | 2022/06/01

REPOSITORIES: GEO

Similar Datasets

2019-01-11 | PXD009305 | Pride
2019-08-15 | GSE115716 | GEO
2016-04-01 | E-GEOD-73083 | biostudies-arrayexpress
2016-04-01 | GSE73083 | GEO
2021-09-09 | PXD020783 | Pride
2022-11-07 | GSE217281 | GEO
2020-09-02 | GSE99618 | GEO
2020-01-10 | GSE143340 | GEO
2021-01-07 | GSE131117 | GEO
2015-05-18 | E-GEOD-62432 | biostudies-arrayexpress