Genomics

Dataset Information

0

JAK inhibitors dampen activation of interferon-activated transcriptomes and the SARS-CoV-2 receptor ACE2 in human renal proximal tubules


ABSTRACT: SARS-CoV-2 infections initiate cytokine storms and activate genetic programs leading to progressive hyperinflammation in multiple organs of patients with COVID-19. While it is known that COVID-19 impacts kidney function, leading to increased mortality, cytokine response of renal epithelium has not been studied in detail. Here, we report on the genetic programs activated in human primary proximal tubule (HPPT) cells by interferons and their suppression by ruxolitinib, a Janus kinase (JAK) inhibitor used in COVID-19 treatment. Integration of our data with those from patients with acute kidney injury and COVID-19, as well as other tissues, permitted the identification of kidney-specific interferon responses. Additionally, we investigated the regulation of the recently discovered isoform (dACE2) of the angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. Using ChIP-seq, we identified candidate interferon-activated enhancers controlling the ACE2 locus, including the intronic dACE2 promoter. Taken together, our study provides an in-depth understanding of genetic programs activated in kidney cells.

ORGANISM(S): Homo sapiens

PROVIDER: GSE161917 | GEO | 2021/02/03

REPOSITORIES: GEO

Similar Datasets

2021-04-23 | GSE161665 | GEO
2021-04-23 | GSE161664 | GEO
2021-04-23 | GSE161663 | GEO
2021-02-03 | GSE161915 | GEO
2021-02-03 | GSE161916 | GEO
2022-01-23 | GSE149687 | GEO
2021-04-18 | GSE166990 | GEO
2021-01-01 | GSE156544 | GEO
2020-10-05 | GSE154761 | GEO
2020-10-05 | GSE154783 | GEO