Project description:The tumor immune microenvironment is influenced by the epigenetic landscape of the tumor. Here, we have identified the SETDB1-TRIM28 complex as a critical suppressor of antitumor immunity. An epigenetic CRISPR-Cas9 screen of 1,218 chromatin regulators identified TRIM28 as a suppressor of PD-L1 expression. We then revealed that expression of the SETDB1-TRIM28 complex negatively correlated with infiltration of effector CD8+ T cells. Inhibition of SETDB1-TRIM28 simultaneously upregulated PD-L1 and activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway to increase infiltration of CD8+ T cells. Mechanistically, SETDB1-TRIM28 inhibition led to micronuclei formation in the cytoplasm, which is known to activate the cGAS-STING pathway. Thus, SETDB1-TRIM28 inhibition bridges innate and adaptive immunity. Indeed, SETDB1 knockout enhanced the antitumor effects of immune checkpoint blockade with anti-PD-L1 in a mouse model of ovarian cancer in a cGAS-dependent manner. Our findings establish the SETDB1-TRIM28 complex as a regulator of antitumor immunity and demonstrate that its loss activates cGAS-STING innate immunity to boost the antitumor effects of immune checkpoint blockade.
Project description:Epigenetic mechanism contributes to immune landscapes in cancer. Here we identify the SETDB1-TRIM28 complex as a critical suppressor of antitumor immunity. An epigenetic CRISPR-Cas9 screen of 1,218 chromatin regulators identified TRIM28 as a novel suppressor of PD-L1 expression. We revealed that expression of the SETDB1-TRIM28 complex negatively correlates with infiltration of effector CD8+ T cells. Inhibition of SETDB1-TRIM28 simultaneously upregulates PD-L1 and activates the cGAS-STING innate immune response to increase infiltration of CD8+ T cells. Mechanistically, SETDB1-TRIM28 inhibition leads to micronuclei formation in cytoplasm, a known activator of the cGAS-STING pathway. Thus, SETDB1-TRIM28 inhibition bridges the innate and adaptive immunity. Indeed, SETDB1 knockout enhances the antitumor effects of immune checkpoint blockade anti-PD-L1 in an ovarian cancer mouse model in a cGAS dependent manner. Our findings establish SETDB1-TRIM28 complex as a regulator of antitumor immunity and its loss activates cGAS-STING innate immunity to boost antitumor effects of immune checkpoint blockades.
Project description:Epigenetic mechanism contributes to immune landscapes in cancer. Here we identify the SETDB1-TRIM28 complex as a critical suppressor of antitumor immunity. An epigenetic CRISPR-Cas9 screen of 1,218 chromatin regulators identified TRIM28 as a novel suppressor of PD-L1 expression. We revealed that expression of the SETDB1-TRIM28 complex negatively correlates with infiltration of effector CD8+ T cells. Inhibition of SETDB1-TRIM28 simultaneously upregulates PD-L1 and activates the cGAS-STING innate immune response to increase infiltration of CD8+ T cells. Mechanistically, SETDB1-TRIM28 inhibition leads to micronuclei formation in cytoplasm, a known activator of the cGAS-STING pathway. Thus, SETDB1-TRIM28 inhibition bridges the innate and adaptive immunity. Indeed, SETDB1 knockout enhances the antitumor effects of immune checkpoint blockade anti-PD-L1 in an ovarian cancer mouse model in a cGAS dependent manner. Our findings establish SETDB1-TRIM28 complex as a regulator of antitumor immunity and its loss activates cGAS-STING innate immunity to boost antitumor effects of immune checkpoint blockades.
Project description:Substantial progress has been made in understanding how tumors escape immune surveillance. However, few measures to counteract tumor immune evasion have been developed. Suppression of tumor antigen expression is a common adaptive mechanism that cancers use to evade detection and destruction by the immune system. Epigenetic modifications play a critical role in various aspects of immune invasion, including the regulation of tumor antigen expression. To identify epigenetic regulators of tumor antigen expression, we established a transplantable syngeneic tumor model of immune escape with silenced antigen expression and used this system as a platform for a CRISPR-Cas9 suppressor screen for genes encoding epigenetic modifiers. We found that disruption of the genes encoding either of the chromatin modifiers activating transcription factor 7-interacting protein (Atf7ip) or its interacting partner SET domain bifurcated histone lysine methyltransferase 1 (Setdb1) in tumor cells restored tumor antigen expression. This resulted in augmented tumor immunogenicity concomitant with elevated endogenous retroviral (ERV) antigens and mRNA intron retention. ERV disinhibition was associated with a robust type I interferon response and increased T-cell infiltration, leading to rejection of cells lacking intact Atf7ip or Setdb1. ATF7IP or SETDB1 expression inversely correlated with antigen processing and presentation pathways, interferon signaling, and T-cell infiltration and cytotoxicity in human cancers. Our results provide a rationale for targeting Atf7ip or Setdb1 in cancer immunotherapy.