Transcriptomics

Dataset Information

0

Local euchromatin enrichment in lamina-associated domains anticipates their re-positioning in the adipogenic lineage


ABSTRACT: Interactions of chromatin with the nuclear lamina via lamina-associated domains (LADs) confers structural stability to the genome. The dynamics of positioning of LADs during differentiation, and how LADs impinge on developmental gene expression, remains elusive, however. We examined changes in the association of lamin B1 with the genome in the first 72 hours of differentiation of adipose stem cells into adipocytes. We demonstrate a repositioning of entire stand-alone LADs and of LAD edges as a prominent nuclear structural feature of early adipogenesis. Whereas adipogenic genes are released from LADs, LADs sequester downregulated or repressed genes irrelevant for the adipose lineage. However, LAD repositioning only partly concurs with gene expression changes. Differentially expressed genes in LADs, including LADs conserved throughout differentiation, reside in local euchromatic and lamin-depleted sub-domains. In these sub-domains, pre-differentiation histone modification profiles correlate with the LAD versus inter-LAD outcome of these genes during adipogenic commitment. In addition, differentially expressed genes in LADs are linked to short-range enhancers which overall co-partition with these genes in LADs versus inter-LADs during differentiation. We conclude that LADs are predictable structural features of adipose nuclear architecture that restrain non-adipogenic genes in a repressive environment.

ORGANISM(S): Homo sapiens

PROVIDER: GSE185066 | GEO | 2022/03/21

REPOSITORIES: GEO

Similar Datasets

2015-09-04 | E-GEOD-63346 | biostudies-arrayexpress
2015-09-04 | GSE63346 | GEO
2019-02-19 | GSE119631 | GEO
2021-03-09 | PXD012943 | Pride
2011-01-24 | E-GEOD-20311 | biostudies-arrayexpress
2019-08-20 | GSE128675 | GEO
2022-09-12 | GSE213032 | GEO
2020-02-15 | GSE113352 | GEO
2020-02-15 | GSE113291 | GEO
2020-02-15 | GSE113350 | GEO