Project description:IL-36, which belongs to the IL-1 superfamily, is increasingly linked to neutrophilic inflammation. Here, we performed single-cell RNA-seq on an acute LPS mouse model of lung inflammation to provide insights into the intercellular signaling pathways and mechanisms through which IL-36 promotes lung inflammation. We identified neutrophils as a source of IL-36 which provides a rationale for targeting IL-36 to improve treatment of a variety of neutrophilic lung diseases.
Project description:IGF1R (Insulin-like Growth Factor 1 Receptor) is a ubiquitously expressed transmembrane tyrosine kinase receptor with multiple functions including inflammation. IGF activity maintains human lung homeostasis, being involved in relevant pulmonary diseases with an inflammatory component, such as lung cancer, COPD, asthma and pulmonary fibrosis. Here we examined the role of IGF1R in lung inflammation using mice with a postnatal deficiency of Igf1r and a model of bleomycin(BLM)-induced lung injury. Lung transcriptome analysis of Igf1r-deficient mice showed a general inhibition of transcription of genes related to epigenetics, inflammation/immune response and oxidative stress activity with potential pulmonary protective roles. Early upon intratracheal BLM treatment, mutant mice showed improved survival and milder pulmonary injury and inflammation. Their lungs presented down-regulation of macrophage (Marco/Adgre1), neutrophil-related (Cxcl1/Ly6g), pro-inflammatory (Tnf/Il1b/Il6), endothelial adhesion (Icam1/Pecam1) and alveolar damage (Aqp5/Sftpc) markers and up-regulation of resolution phase markers (Csf1/Il13/Cd209a). Changes in mRNA of IGF system genes were also found, in parallel to a hindered response to hypoxia (Hif1a) and increased expression of the anti-oxidative stress marker Gpx8. These findings identify Igf1r as an important player in oxidative stress and inflammation and suggest that targeting Igf1r may block the inflammatory response in lung diseases with this component.
Project description:Members of the lipocalin protein family serve as biomarkers for kidney disease and acute phase inflammatory reactions, and are under pre-clinical development for the diagnosis and therapy of allergies. However, none of the lipocalin family members has made the step into clinical development, mostly due to their complex biological activity and the lack of in-depth mechanistic knowledge. Here, we show that the hepatokine lipocalin 13 (LCN13) triggers glucose-dependent insulin secretion and cell proliferation of primary mouse islets. However, inhibition of endogenous LCN13 expression in lean mice did not alter glucose and lipid homeostasis. Enhanced hepatic secretion of LCN13 in either diet-induced or genetic obesity led to no discernable impact on systemic energy homeostasis, neither in preventive nor therapeutic setting. Of note, loss or forced LCN13 hepatic secretion did not trigger any compensatory regulation of related lipocalin family members. Together, these data are in stark contrast to the suggested gluco-regulatory and therapeutic role of LCN13 in obesity, and imply complex regulatory steps in LCN13 biology at the organismic level mitigating its principal insulinotropic effects.
Project description:Mast cells (MCs) play a pivotal role in barrier tissues that connect to the external environment, but their distribution and functions in lymph nodes (LNs) remain largely unclear, especially during the tumor progression. Here, using single-cell RNA sequencing (scRNA-seq), photoconversion tumor cell lines, MC-deficient KitW-sh mice and lipocalin-2-deficient mice, we show that MCs in LNs promote the stemness of tumor cells metastasizing to LNs and their further dissemination to distant organs. Mechanistically, lipocalin-2, which is secreted by LN MCs, facilitates the generation of mitochondrial peptide MOTS-c by opening the mitochondrial permeability transition pore (mPTP), which promotes the activity of the stem cell transcription factor TFCP2L1. Aptamers of MOTS-c or lipocalin-2 neutralization inhibit the MC-mediated stemness of tumor cells and reduce lung metastasis. Overall, we reveal the function of LN MCs and identified an appealing therapeutic strategy for tumor metastasis.
Project description:Semaphorin 6D (Sema6D) have various effects in immune responses. However, the involvement of Sema6D in ILC2 funcions remains unclear. We identified the genes regulated by Sema6D in lung ILC2s during IL-33 induced acute lung inflammation.
Project description:melanocortin 5 receptor (Mc5r) have various effects in immune responses. However, the involvement of Mc5r in ILC2 functions remains unclear. We identified the genes regulated by Mc5r in lung ILC2s during papain induced acute lung inflammation.
Project description:Background: Microvascular injury and increased vascular leakage are prominent features of the radiation-induced lung injury (RILI) which follows cancerâ??associated thoracic irradiation. The mechanisms of RILI are incompletely understood and therapeutic strategies to limit RILI are currently unavailable. We established a murine model of radiation pneumonitis in order to assess mechanism-based therapies for RILI-induced inflammation and vascular barrier dysfunction. Based on prior studies, we investigated the therapeutic potential of simvastatin as a vascular barrier protective agent in RILI. Methods: C57BL6/J mice receiving single dose exposure to 18, 20, 22, or 25 Gy, (n=10/group) were temporally assessed (4-12 weeks) for cellular and biochemical indices of injury present in both bronchoalveolar lavage (BAL) and lung tissues (cytokines, tyrosine nitrosylated proteins, leukocytes, extravasation of Evans blue dye or EBD, BAL albumin, histology). In specific experiments, irradiated mice (25Gy) received simvastatin (10 mg/kg) via intraperitoneal injection three times a week (pre and post irradiation) for 2- 6 weeks post irradiation. Results. Acute RILI evolved in a dose- and time-dependent fashion. Mice irradiated with 25Gy exhibited modest increases in BAL leukocytes but significant increases in BAL IL-6 (p=0.03) and TNF-a (p=0.01) at 4 weeks compared to controls. Increases in BAL nitrotyrosine content peaked at 6 weeks (p=0.03) and was accompanied by marked nitrotyrosine immunostaining in lung tissues. Indices of increase lung vascular permeability such as EBD extravasation, BAL protein and BAL albumin significantly increased over time beginning at 6 weeks (p>0.002 all) with histological evidence of severe edema formation and airway inflammation. Simvastatin- treated irradiated mice were noted to exhibit marked attenuation of vascular leak with significantly decreased BAL protein (p=0.01) and inflammatory cell infiltration (50% reduction). Conclusion: Simvastatin is a potentially important therapeutic strategy to limit RILI and may influence radiation associated morbidity and mortality. We used microarrays to detail the global programme of gene expression induced by radiation in Wild type and the protection of SIMVA Experiment Overall Design: animals were treated by Vehical, Radiation (25Gy), SIMVA(10mg/kg), or both.