Genomics

Dataset Information

0

A Multi-Organoid Platform Identifies CIART as a Key Factor for SARS-CoV-2 Infection [ATAC-seq]


ABSTRACT: COVID-19 is a systemic disease involving multiple organs. Human pluripotent stem cells (hPSCs) derived organoids/cells provide insight into cellular tropism and host response, yet the molecular mechanisms regulating SARS-CoV-2 infection remain poorly defined. Here, we systematically examined changes in transcript profiles caused by SARS-CoV-2 infection at different MOIs for airway organoids (AWOs), alveolar organoids (ALOs) and cardiomyocytes (CMs), and identified several genes, including CIART, that are generally implicated in controlling SARS-CoV-2 infection. AWOs, ALOs, and CMs derived from isogenic CIART-/- hPSCs were significantly resistant to SARS-CoV-2 infection, independent of viral entry. Single-cell RNA-seq further validated the decreased levels of SARS-CoV-2 infection in multi-ciliated cells of AWOs. CUT&RUN, ATAC-seq and RNA-seq analyses found that CIART controls SARS-CoV-2 infection at least in part through regulating NR4A1, a gene also identified from the multi-organoid analysis. Finally, transcriptional profiling and pharmacological inhibition revealed that the Retinoid X Receptor (RXR) pathway regulates SARS-CoV-2 infection downstream of CIART/NR4A1. The multi-organoid platform provides potential therapeutic targets for protection against COVID-19 across organ systems.

ORGANISM(S): Homo sapiens

PROVIDER: GSE202965 | GEO | 2022/12/07

REPOSITORIES: GEO

Similar Datasets

2022-12-07 | GSE202963 | GEO
2022-12-07 | GSE202966 | GEO
2022-12-07 | GSE202964 | GEO
2020-06-11 | GSE147903 | GEO
2020-10-27 | GSE152586 | GEO
2021-06-08 | GSE152060 | GEO
2021-08-07 | GSE155974 | GEO
2022-09-30 | GSE211562 | GEO
2021-09-24 | ST001921 | MetabolomicsWorkbench
| 5792 | ecrin-mdr-crc