Project description:Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development, although its function in lung cancer remains unclear. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cells decreased tumor cell progression. Furthermore, analysis of a mouse lung cancer model with lung-specific conditional Tip60 knockout revealed suppressed tumor formation relative to controls, but no apparent effects on normal lung homeostasis. RNA-seq and ChIP-seq analyses of inducible TIP60 knockdown H1975 cells relative to controls revealed transglutaminase enzyme (TGM5) as downstream of TIP60. In addition, a candidate TIP60 inhibitor suppressed tumor growth in cell culture and in vivo. Taken together, suppression of TIP60 activity shows tumor-specific efficacy against lung cancer, with no overt effect on normal tissues. Our work suggests that targeting TIP60 could be a promising approach in treating lung cancer.
Project description:Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development, although its function in lung cancer remains unclear. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cells decreased tumor cell progression. Furthermore, analysis of a mouse lung cancer model with lung-specific conditional Tip60 knockout revealed suppressed tumor formation relative to controls, but no apparent effects on normal lung homeostasis. RNA-seq and ChIP-seq analyses of inducible TIP60 knockdown H1975 cells relative to controls revealed transglutaminase enzyme (TGM5) as downstream of TIP60. In addition, a candidate TIP60 inhibitor suppressed tumor growth in cell culture and in vivo. Taken together, suppression of TIP60 activity shows tumor-specific efficacy against lung cancer, with no overt effect on normal tissues. Our work suggests that targeting TIP60 could be a promising approach in treating lung cancer.
Project description:Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development and maintenance, although its function in lung cancer remains controversial. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cell lines decreased tumor cell growth, migration, and invasion. Furthermore, analysis of a mouse lung cancer model with lung-specific conditional Tip60 knockout revealed suppressed tumor formation relative to controls, but no apparent effects on normal lung homeostasis. RNA-seq and ChIP-seq analyses of inducible TIP60 knockdown H1975 cells relative to controls revealed transglutaminase enzyme (TGM5) as downstream of TIP60. Investigation of a connectivity map database identified several candidate compounds that decrease TIP60 mRNA, one that suppressed tumor growth in cell culture and in vivo. In addition, TH1834, a TIP60 acetyltransferase inhibitor, showed comparable antitumor effects in cell culture and in vivo. Taken together, suppression of TIP60 activity shows tumor-specific efficacy against lung cancer, with no overt effect on normal tissues. Our work suggests that targeting TIP60 could be a promising approach to treating lung cancer.
Project description:Chemotherapy forms the backbone of current treatments for many patients with advanced non-small-cell lung cancer (NSCLC). However, the survival rate is low in these patients due to the development of drug resistance, including cisplatin resistance. In this study, we developed a novel strategy to combat the growth of cisplatin-resistant (CR) NSCLC cells. We have shown that treatment with the plant-derived, non-psychotropic small molecular weight molecule, cannabidiol (CBD), significantly induced apoptosis of CR NSCLC cells. In addition, CBD treatment significantly reduced tumor progression and metastasis in a mouse xenograft model and suppressed cancer stem cell properties. Further mechanistic studies demonstrated the ability of CBD to inhibit the growth of CR cell lines by reducing NRF-2 and enhancing the generation of reactive oxygen species (ROS). Moreover, we show that CBD acts through Transient Receptor Potential Vanilloid-2 (TRPV2) to induce apoptosis, where TRPV2 is expressed on human lung adenocarcinoma tumors. High expression of TRPV2 correlates with better overall survival of lung cancer patients. Our findings identify CBD as a novel therapeutic agent targeting TRPV2 to inhibit the growth and metastasis of this aggressive cisplatin-resistant phenotype in NSCLC.
Project description:Lung cancers, the leading cause of cancer mortality worldwide, are characterized by a high metastatic potential. Growing evidence reveals that Spindlin 1 (SPIN1) is involved in tumor progression and carcinogenesis. However, the role of SPIN1 in non-small-cell lung cancer (NSCLC) and the molecular mechanisms underlying SPIN1 in human NSCLC remain undetermined. Here we examined the function of SPIN1 in human NSCLC and found that the expression of SPIN1 was closely correlated with the overall survival and poor prognosis of NSCLC patients. Aberrant regulation of microRNAs (miRNAs) has an important role in cancer progression. We revealed that miR-409 inhibits the expression of SPIN1 by binding directly to the 3' UTR of SPIN1 using dual-luciferase reporter assays. Overexpression of miR-409 significantly suppressed cell migration, growth, and proliferation by inhibiting SPIN1 in vitro and in vivo. SPIN1 overexpression in miR-409-transfected NSCLC cells effectively rescued the suppression of cell migration, growth, and proliferation regulated by miR-409. miR-409 regulates the PI3K/AKT (protein kinase B) pathway in NSCLC. Moreover, clinical data showed that NSCLC patients with high levels of miR-409 experienced significantly better survival. miR-409 expression was also negatively associated with SPIN1 expression. Taken together, these findings highlight that the miR-409/SPIN1 axis is a useful pleiotropic regulatory network and could predict the metastatic potential in NSCLC patients early, indicating the possibility that miR-409 and SPIN1 might be attractive prognostic markers for treating NSCLC patients.