Genomics

Dataset Information

0

The VCAM1–ApoE pathway directs microglial chemotaxis and alleviates Alzheimer’s disease pathology


ABSTRACT: In Alzheimer’s disease (AD), sensome receptor dysfunction impairs microglial danger-associated molecular pattern (DAMP) clearance and exacerbates disease pathology. While extrinsic signals including interleukin-33 (IL-33) can restore microglial DAMP clearance, it remains largely unclear how the sensome receptor(s) is regulated and interacts with DAMP during phagocytic clearance. Here, we show that IL-33 induces VCAM1 in microglia, which promotes microglial chemotaxis toward amyloid-beta (Aβ) plaque-associated ApoE, and leads to Aβ clearance. We show that IL-33 stimulates a chemotactic state in microglia, characterized by Aβ-directed migration. Functional screening identified that VCAM1 directs microglial Aβ chemotaxis by sensing Aβ plaque-associated ApoE. Moreover, we found that disrupting VCAM1–ApoE interaction abolishes microglial Aβ chemotaxis, resulting in decreased microglial clearance of Aβ. In patients with AD, higher cerebrospinal fluid levels of soluble VCAM1 were correlated with impaired microglial Aβ chemotaxis. Together, our findings demonstrate that promoting VCAM1–ApoE-dependent microglial functions ameliorates AD pathology.

ORGANISM(S): Mus musculus

PROVIDER: GSE208006 | GEO | 2023/07/18

REPOSITORIES: GEO

Similar Datasets

2020-05-01 | GSE147495 | GEO
2018-02-15 | GSE109906 | GEO
2023-01-09 | PXD038665 | Pride
2018-09-18 | PXD009137 | Pride
2019-05-01 | GSE113539 | GEO
2020-09-01 | GSE153655 | GEO
2020-09-01 | GSE153654 | GEO
2020-09-01 | GSE153657 | GEO
2021-04-30 | GSE158962 | GEO
2024-02-01 | GSE254205 | GEO