Transcriptomics

Dataset Information

0

AhR alters essential transcriptional regulators driving osteogenic differentiation of multipotent mesenchymal stem cells


ABSTRACT: Differentiation of multipotent mesenchymal stem cells into bone-forming osteoblasts requires strict coordination of transcriptional pathways. Aryl hydrocarbon receptor (AhR) ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), have been shown to alter osteoblast differentiation in vitro and bone formation in multiple developmental in vivo models. The goal of the present study was to establish a global transcriptomic landscape during early, intermediate, and apical stages of osteogenic differentiation in vitro in response to TCDD exposure. Human bone-derived mesenchymal stem cells (hBMSC) were cultured in growth media (GM), osteogenic differentiation media (ODM), or osteogenic differentiation media containing 10 nM TCDD (ODM+TCDD), thus enabling a comparison of the transcriptomic profiles of undifferentiated, differentiated, and differentiated -TCDD-exposed hBMSCs, respectively. In this test system, exposure to TCDD attenuated differentiation of hBMSCs into osteoblasts as evidenced by reduced alkaline phosphatase activity and mineralization. At various timepoints, we observed altered expression of genes that play a role in the Wnt, FGF, BMP/TGF-β developmental pathways, as well as pathways related to extracellular matrix organization and deposition. Reconstruction of gene regulatory networks with the iDREM analysis revealed modulation of transcription factors (TF) including POLR3G, NR4A1, RDBP, GTF2B, POU2F2 and ZEB1, which may putatively influence osteoblast differentiation and the requisite deposition and mineralization of bone extracellular matrix. We demonstrate that the combination of RNA-Seq data in conjunction with the iDREM regulatory model, captures the transcriptional dynamics underlying mesenchymal stem cell differentiation under different conditions in vitro. Model predictions are consistent with existing knowledge and provides a new tool to identify novel pathways and transcription factors that may facilitate a better understanding of the osteoblast differentiation process, perturbation by exogenous agents, and potential intervention strategies targeting those specific pathways.

ORGANISM(S): Homo sapiens

PROVIDER: GSE217334 | GEO | 2023/02/08

REPOSITORIES: GEO

Similar Datasets

2022-10-14 | PXD035845 | Pride
2014-09-01 | E-GEOD-48616 | biostudies-arrayexpress
2011-09-19 | E-GEOD-28074 | biostudies-arrayexpress
2022-09-28 | GSE205432 | GEO
2023-06-14 | PXD040463 | Pride
2009-09-18 | E-GEOD-18043 | biostudies-arrayexpress
2024-03-20 | GSE252845 | GEO
2014-09-01 | GSE48616 | GEO
2022-02-24 | PXD006865 | Pride
2009-09-10 | GSE18043 | GEO