Genomics

Dataset Information

0

Nuclear pCHK1 as a potential biomarker of increased sensitivity to ATR inhibition


ABSTRACT: Excessive genomic instability coupled with abnormalities in DNA repair pathways induce high levels of “replication stress” when cancer cells propagate. Rather than hampering cancer cell proliferation, novel treatment strategies are turning their attention toward targeting cell cycle checkpoint kinases (such as ATR, CHK1, WEE1 and others) along the DNA damage response and replicative stress response pathways, thereby allowing unrepaired DNA damage to be carried forward towards mitotic catastrophe and apoptosis. The selective inhibitor of ATR kinase elimusertib (BAY 1895344), has demonstrated preclinical and clinical monotherapy activity; however, reliable predictive biomarkers of treatment benefit are still lacking. In this study, using gene expression profiling of 24 cell lines from different cancer types and in a panel of ovarian cancer cell lines, we found that nuclear-specific enrichment of checkpoint kinase 1 (CHK1) correlated with increased sensitivity to elimusertib. Using an advanced multispectral imaging system in subsequent cell line-derived xenograft specimens, we showed a trend between nuclear phosphorylated-CHK1 (pCHK1) staining and increased sensitivity to the ATR inhibitor elimusertib, indicating the potential value of pCHK1 expression as a predictive biomarker of ATR inhibitor sensitivity.

ORGANISM(S): Homo sapiens

PROVIDER: GSE217579 | GEO | 2022/11/09

REPOSITORIES: GEO

Similar Datasets

2021-01-01 | GSE158338 | GEO
2023-07-25 | GSE234732 | GEO
2022-04-05 | GSE168987 | GEO
2020-12-28 | GSE131912 | GEO
2020-04-23 | PXD015125 | Pride
| EGAD00001006774 | EGA
2020-02-24 | GSE143007 | GEO
2020-02-05 | GSE143152 | GEO
2014-01-24 | E-GEOD-54268 | biostudies-arrayexpress
2024-04-04 | GSE263176 | GEO