Other

Dataset Information

0

Safeguarding genome integrity during gene-editing therapy of age-related macular degeneration


ABSTRACT: Ensuring genome safety during gene editing is crucial for clinical translation of the high-efficient CRISPR-Cas9 toolbox. Therefore, the undesired events including chromosomal translocations, vector integrations, and large deletions arising during therapeutic gene editing remain to be adequately addressed or tackled in vivo. Here, we apply CRISPR-Cas9TX in comparison to CRISPR-Cas9 to target Vegfa for the treatment of age-related macular degeneration (AMD) disease in a mouse model. AAV delivery of both CRISPR-Cas9 and CRISPR-Cas9TX can efficiently inhibit laser-induced neovascularization. Importantly, Cas9TX almost eliminates chromosomal translocations that occur at a frequency of approximately 1% in Cas9-edited mouse retinal cells. Strikingly, the widely observed AAV integration at the target Vegfa site is also greatly dropped from nearly 50% of edited events to the background level during Cas9TX editing. Our findings reveal that chromosomal structural variations routinely occur during in vivo genome editing and highlight Cas9TX as a superior form of Cas9 for in vivo gene disruption.

ORGANISM(S): Mus musculus

PROVIDER: GSE218818 | GEO | 2022/11/30

REPOSITORIES: GEO

Similar Datasets

2023-12-01 | GSE179884 | GEO
2016-07-29 | E-GEOD-84534 | biostudies-arrayexpress
2022-09-12 | GSE213149 | GEO
2018-12-13 | E-MTAB-7095 | biostudies-arrayexpress
2016-07-29 | GSE84534 | GEO
2022-10-12 | GSE202887 | GEO
2022-03-03 | E-MTAB-11497 | biostudies-arrayexpress
2021-02-14 | GSE164389 | GEO
2019-12-04 | GSE135064 | GEO
2022-05-04 | E-MTAB-10256 | biostudies-arrayexpress