Single-nucleus atlas of the human kidney papilla identifies significant immune injury in patients with stone disease
Ontology highlight
ABSTRACT: Kidney stone disease causes significant morbidity and increases health care utilization. In this dataset, we applied a single-nucleus assay to renal papila samples in order to charachterize the cellular and molecular niches in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.
Project description:Clinical and animal studies have demonstrated the increasing evidence of oxidative stress in kidney stone disease. Recent findings have shown that the interactions between calcium oxalate (CaOx) crystals and renal tubular cells can promote many cellular events such as cell proliferation, cell death, cellular injury, mitochondrial dysfunction and inflammatory cascade. All of these cellular events are associated with oxidative stress and overproduction of free radicals and reactive oxygen species (ROS) such as superoxide and hydrogen peroxide in renal tubular cells. However, almost all of these references have shown that oxidative stress occurs after the causative crystals have been deposited in the kidney or exposed to renal tubular cells, whereas its primary role as the etiology remained unclear. In this study, we examined effects of oxidative modifications of urinary proteins on CaOx stone formation processes. Urinary proteins were modified by performic oxidation and the presence of oxidatively modified urinary proteins was verified, quantified and characterized by Oxyblot assay and tandem mass spectrometry (nanoLC-ESI-LTQ-Orbitrap-MS/MS). Subsequently, activities of oxidatively modified urinary proteins on CaOx stone formation processes were examined.
Project description:Kidney stone disease causes significant morbidity and increases health care utilization. The pathogenesis of stone disease is incompletely understood, due in part to the poor characterization of the cellular and molecular makeup of the human papilla and its alteration with disease. In this work, we characterize the human renal papilla in health and calcium oxalate stone disease using single nuclear RNA sequencing, spatial transcriptomics and high-resolution large scale multiplexed 3D and Co-Detection by indexing (CODEX) imaging. We define and localize subtypes of principal cells enriched in the papilla as well as immune and stromal cell populations. We further uncovered an undifferentiated epithelial cell signature in the papilla, particularly during nephrolithiasis.
Project description:Microarray analysis for total RNA from rat renal cortex and outer meulla. Nephrolithiasis is a disorder with a poor quality of life due to severe pain and no effective medication. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, an anti-diabetic agent, have diuretic and anti-inflammatory effects, suggesting their benefit in treating nephrolithiasis. However, the effects of SGLT2 inhibition against renal stone formation have not been elucidated. To check gene expression profiles, microarray analysis was performed.
Project description:OBJECTIVES: Kidney stone diseases are common in premature infants, but the underlying molecular and cellular mechanisms are not fully defined. We carried out a prospective observational study using microarray analysis to identify factors that may be crucial for the initiation and progression of stone-induced injury in the developing mouse kidney. METHODS: Mice with adenine phosphoribosyltransferase (Aprt) deficiency develop 2,8-dihydroxyadenine (DHA) nephrolithiasis. Gene expression changes between Aprt-/- and Aprt+/+ kidneys from newborn and adult mice were compared using Affymetrix gene chips. RESULTS: We observed that: (i) gene expression changes induced by Aprt deficiency are developmental stage-specific; (ii) maturation-related gene expression changes are delayed in developing Aprt-/- kidneys; and (iii) immature Aprt-deficient kidneys contain large numbers of intercalated cells blocked from terminal differentiation. CONCLUSIONS: This study presents a comprehensive picture of the transcriptional changes induced by stone injury in the developing mouse kidney. Our findings help explain growth impairment in kidneys subject to injury during the early stages of development. Total RNA were extracted from kidneys of 12 newly born and 6 adult mice (half Aprt-/- and half control). Gene expression changes between Aprt-/- and Aprt+/+ kidneys from newborn and adult mice were compared using Affymetrix gene chips.
Project description:OBJECTIVES: Kidney stone diseases are common in premature infants, but the underlying molecular and cellular mechanisms are not fully defined. We carried out a prospective observational study using microarray analysis to identify factors that may be crucial for the initiation and progression of stone-induced injury in the developing mouse kidney. METHODS: Mice with adenine phosphoribosyltransferase (Aprt) deficiency develop 2,8-dihydroxyadenine (DHA) nephrolithiasis. Gene expression changes between Aprt-/- and Aprt+/+ kidneys from newborn and adult mice were compared using Affymetrix gene chips. RESULTS: We observed that: (i) gene expression changes induced by Aprt deficiency are developmental stage-specific; (ii) maturation-related gene expression changes are delayed in developing Aprt-/- kidneys; and (iii) immature Aprt-deficient kidneys contain large numbers of intercalated cells blocked from terminal differentiation. CONCLUSIONS: This study presents a comprehensive picture of the transcriptional changes induced by stone injury in the developing mouse kidney. Our findings help explain growth impairment in kidneys subject to injury during the early stages of development.
Project description:Kidney stone disease (KSD, also named renal calculi, nephrolithiasis, or urolithiasis) is a common urological disease entailing the formation of minerals and salts that form inside the urinary tract, frequently caused by diabetes and high blood pressure, hypertension, and monogenetic components in most patients. 10% of adults worldwide are affected by KSD, which incidence continues to be highly prevalent and increasing. For the identification of novel therapeutic targets in KSD to deal with this situation, we adopted high-throughput sequencing and mass spectrometry (MS) techniques in this study and carried out an integrative analysis of exosome proteome and DNA methylation data from blood samples of normal and KSD patients. Our study described the profiling of serum exosome and DNA methylation in blood from both normal individuals and those with Kidney Stone Disease (KSD), finding the overexpressed proteins and the demethylated DNA genes in KSD samples are related to immune reactions. The consistency of the results in proteomics and epigenetics supports the feasibility of the comprehensive strategy. Our understanding of the molecular landscape of KSD provides an opportunity for more information on the pathogenic mechanism, precise diagnosis, and treatment for KSD.
Project description:To investigate the transcriptome differences in kidney stones process, we established CaOx-induced nephrolithiasis mouse model and performed RNA-sequencing.
Project description:Microarray analysis was used to assess the expression levels of lncRNAs and mRNAs in three pairs of Randall’s plaques tissues of CaOx renal stones patients and normal renal papillary tissues.Randall’s Plaques tissues of CaOx renal stones patients were obtained from patients with idiopathic CaOx renal stone who underwent percutaneous nephrolithotomy. Normal renal papillary tissues were obtained from patients with renal tumor who underwent nephrectomy, the tissues were obtained from papillary without tumor invasion. Randall’s Plaques tissues of CaOx renal stones patients were obtained from patients with idiopathic CaOx renal stone who underwent percutaneous nephrolithotomy. Normal renal papillary tissues were obtained from patients with renal tumor who underwent nephrectomy, the tissues were obtained from papillary without tumor invasion.
Project description:We conducted a calculi rat model, applied for an integrated proteomic and transcriptomic analysis to characterize the distinct gene expression profiles in calculi oxalate stone formation and its related kidney injury. Six distinct gene clusters were identified according to the consistency of transcriptome and proteome. Gene Ontology and KEGG pathway enrichment was performed to analyze the functions of each sub-group differentially expressed genes. Results showed that the calculi rat kidney was increased expression of injured & apoptotic markers and immune-molecules, and decreased expression of solute carriers & transporters and many metabolic related factors. The present proteotranscriptomic study provided a data resource and new insights for better understanding of the pathogenesis of nephrolithiasis, will hopefully facilitate the future development of new strategies for the recurrence prevention and treatment in patients with kidney stone disease.
Project description:To investigate the transcriptome differences between wild-type and Vhl mutant mice in kidney stones process, we established CaOx-induced nephrolithiasis mouse model and performed RNA-sequencing.