Transcriptomics

Dataset Information

0

RNAseq of ATDC5 cells with mechanotransductive perturbations


ABSTRACT: Chondrocyte phenotype is preserved when cells are round and the actin cytoskeleton is cortical. Conversely, these cells rapidly dedifferentiate in vitro with increased mechanoactive Rho signaling, which increases cell size and causes large actin stress fiber to form. While the effects of Rho on chondrocyte phenotype are well established, the molecular mechanism is not yet fully elucidated. Yap, a transcriptional co-regulator, is regulated by Rho in a mechanotransductive manner and can suppress chondrogenesis in vivo. Here, we sought to elucidate the relationship between mechanoactive Rho and Yap on chondrogenic gene expression. We first show that decreasing mechanoactive state through Rho inhibition results in a broad increase in chondrogenic gene expression. Next, we show that Yap and its co-regulator Taz, are negative regulators of chondrogenic gene expression, and removal of these factors promotes chondrogenesis even in environments that promote cell spreading. Finally, we establish that Yap/Taz is essential for translating Rho-mediated signals to negatively regulate chondrogenic gene expression, and that its removal negates the effects of increased Rho signaling. Together, these data indicate that Rho is a mechanoregulator of chondrogenic differentiation, and that its impact on chondrogenic expression is exerted principally through mechanically-induced translocation and activity of Yap and Taz.

ORGANISM(S): Mus musculus

PROVIDER: GSE231925 | GEO | 2023/05/13

REPOSITORIES: GEO

Similar Datasets

2022-11-02 | GSE154332 | GEO
2015-11-18 | GSE68599 | GEO
2021-07-02 | GSE174460 | GEO
2019-06-01 | GSE130136 | GEO
2019-06-01 | GSE130135 | GEO
2019-06-01 | GSE130133 | GEO
2017-03-08 | GSE73284 | GEO
2015-10-28 | E-GEOD-66252 | biostudies-arrayexpress
2019-03-12 | GSE94860 | GEO
2019-03-12 | GSE94856 | GEO