Targeting RhoA nuclear mechanoactivity rejuvenates aged hematopoietic stem cells [bulk RNA-seq]
Ontology highlight
ABSTRACT: Biomechanical alterations contribute to the decreased regenerative capacity of hematopoietic stem cells (HSCs) upon aging. RhoA is a key regulator of mechanosignaling, but its role in mechanotransduction in stem cell aging remains unclear. Here we show that murine HSCs respond to increased nuclear envelope (NE) tension by inducing NE translocation of P-cPLA2, which cell-intrinsically activates RhoA. Aged HSCs experience physiologically higher intrinsic NE tension, but reducing RhoA activity lowers NE tension in aged HSCs. Feature image analysis of HSC nuclei reveals that chromatin remodeling is associated with RhoA inhibition, including restoration of youthful levels of the heterochromatin marker H3K9me2 and a decrease in chromatin accessibility and transcription at retrotransposons. Finally, we demonstrate that RhoA inhibition upregulates Klf4 expression and transcriptional activity, improving aged HSC regenerative capacity and lympho/myeloid skewing in vivo. Together, our data outline an intrinsic RhoA-dependent mechanosignaling axis, which can be pharmacologically targeted to restore aged stem cell function.
ORGANISM(S): Mus musculus
PROVIDER: GSE233985 | GEO | 2025/08/29
REPOSITORIES: GEO
ACCESS DATA