Genomics

Dataset Information

0

Augmented Drug Resistance of Osteosarcoma Cells within Decalcified Bone Matrix Scaffold: the role of Glutamine Metabolism


ABSTRACT: Due to the lack of a precise in vitro model that can mimic the nature microenvironment in osteosarcoma, the understanding of its resistance to chemical drugs remains limited. Here, we report a novel three-dimensional model of osteosarcoma constructed by seeding tumor cells (MG-63 and MNNG/HOS Cl #5) within in demineralized bone matrix scaffolds. Demineralized bone matrix scaffolds retain the original components of the natural bone matrix (hydroxyapatite and collagen type I), and possess good biocompatibility allowing osteosarcoma cells to proliferate and aggregate into clusters within the pores. Growing within the scaffold conferred elevated resistance to doxorubicin on MG-63 and MNNG/HOS Cl #5 cell lines as compared with two-dimensional cultures. Transcriptomic analysis showed an increased enrichment for drug resistance genes along with enhanced glutamine metabolism in osteosarcoma cells in demineralized bone matrix scaffolds. Inhibition of glutamine metabolism resulted a decrease in drug resistance of osteosarcoma, which could be restored by α-ketoglutarate supplementation. Overall, our study suggests that microenvironmental cues in demineralized bone matrix scaffolds can enhance osteosarcoma drug responses and that targeting glutamine metabolism may be a strategy for treating osteosarcoma drug resistance.

ORGANISM(S): Homo sapiens

PROVIDER: GSE234632 | GEO | 2023/12/20

REPOSITORIES: GEO

Similar Datasets

2012-05-22 | E-GEOD-38133 | biostudies-arrayexpress
2012-05-22 | E-GEOD-38134 | biostudies-arrayexpress
2012-05-22 | E-GEOD-38135 | biostudies-arrayexpress
2012-05-23 | GSE38134 | GEO
2012-05-23 | GSE38133 | GEO
2015-05-01 | E-GEOD-57203 | biostudies-arrayexpress
| PRJNA167380 | ENA
2024-03-22 | GSE222467 | GEO
| PRJNA382349 | ENA
| PRJNA167343 | ENA