Characterizing immune signatures of seasonal coronaviruses HCoV-229E and -OC43 in human nasal airway epithelial cells
Ontology highlight
ABSTRACT: Seasonal coronaviruses, including HCoV-229E, -NL63, -OC43, and -HKU1, are prevalent worldwide, predominantly causing mild, self-limiting upper respiratory (re-)infections in adults, often presenting as the common cold. However, in individuals with compromised immune systems, these viruses may lead to more severe illness and even fatalities. Recently, there has been a renewed interest in studying HCoVs due to their amenability to handling in reduced biosafety containment, offering valuable alternatives to SARS-CoV-2 for preclinical screening and the development of antiviral treatments. Despite their significance, research on HCoVs has been hindered by limited host-genomic data. To address this, we performed RNA-sequencing on 3D air-liquid interface human nasal airway epithelial cells (hNECs) infected with the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43. These hNECs were derived from pooled adult donors and exhibited pseudostratified mucociliated differentiation, faithfully replicating the complexities of normal airway biology. Our study aimed to identify specific immune signatures associated with HCoV infections in a physiologically relevant model. By elucidating the host responses induced by different seasonal coronaviruses, we can gain valuable insights into their pathogenesis and interactions with the respiratory epithelium. This knowledge may pave the way for the development of targeted therapeutics and prophylactics to combat HCoV infections effectively.
ORGANISM(S): Homo sapiens
PROVIDER: GSE238079 | GEO | 2025/07/01
REPOSITORIES: GEO
ACCESS DATA