Resident microglia and infiltrating macrophages inflammatory, metabolic and sex-dependent gene-regulatory dynamics in the neonatal hippocampus after hypoxia-ischemia.
Ontology highlight
ABSTRACT: Neonatal hypoxia-ischemia (HI) is a major cause of perinatal death and long-term disabilities worldwide. Post-ischemic neuroinflammation, characterized by resident and infiltrating immune cells, plays a pivotal role in HI pathophysiology. However, the specific modulatory roles of resident microglia and blood-derived macrophages remain poorly understood. In the present study, we investigated the temporal dynamics of microglia (CX3CR1GFP/+) and infiltrating macrophages (CCR2RFP/+) in the hippocampi of mice subjected to HI at postnatal day (PND) 9. We reveal an increase of CX3CR1GFP+ resident cells in the injured hippocampi soon after HI, peaking at three days post injury. In contrast, infiltration of CCR2RFP/+ cells peaked one day after HI and gradually decreased over time. Transcriptomic signatures of CX3CR1GFP/+ and CCR2RFP/+ cells isolated from hippocampi showed a partial convergence at day 3, through cell type - specific dynamics. Using inflammatory pathway and transcription factor analyses, we identify a distinct post-ischemic response in CCR2RFP/+ cells characterized by differential gene expression in sensome, homeostatic, matrisome, lipid metabolic and inflammatory molecular signatures as consequence of HI. Finally, we identified a sexual dimorphism in CX3CR1GFP/+ cells, where microglia unique genes in males but not in females returned to homeostatic levels comparable to controls three days after HI. In conclusion, our results indicate that CX3CR1GFP/+ and CCR2RFP/+ cells have diverse roles in orchestrating the inflammatory cascade after HI, and that infiltrating macrophages drive post-ischemic inflammation.
Project description:Objective: Brain tumors (gliomas) contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM) biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome. Methods: High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO) database was queried to determine the prognostic value of identified microglia biomarkers in human GBM. Results: We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype. Significance: These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention. Total RNA was isolated from three independently-generated sets of flow sorted bone marrow monocytes (CD11b+ CD45high CD115+ Ly6G- cells) and brainstem microglia (CD11b+ CD45low CD115low Ly6G- cells) for Illumina RNA-Seq, and two additional pools were subsequently generated and submitted for Affymetrix Mouse Exon 1.0ST microarray. Two of the RNA-Seq samples were additionally analyzed by the microarray, for a total of 6 samples (3 monocyte, 3 microglia) in each platform. Data outputs were analyzed by two analysis methods each (RNA-Seq data: ALEXA-Seq and Cufflinks; microarray data: Partek and Aroma). All four lists were merged into a new high-confidence gene list of transcripts that were significantly differentially expressed (DE) in three out of the four analyses. In this dataset, we includeRNA-Seq data obtained from flow sorted mouse bone marrow monocytes and brainstem microglia.
Project description:Objective: Brain tumors (gliomas) contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM) biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome. Methods: High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO) database was queried to determine the prognostic value of identified microglia biomarkers in human GBM. Results: We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype. Significance: These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention. Total RNA was isolated from three independently-generated sets of flow sorted bone marrow monocytes (CD11b+ CD45high CD115+ Ly6G- cells) and brainstem microglia (CD11b+ CD45low CD115low Ly6G- cells) for Illumina RNA-Seq, and two additional pools were subsequently generated and submitted for Affymetrix Mouse Exon 1.0ST microarray. Two of the RNA-Seq samples were additionally analyzed by the microarray, for a total of 6 samples (3 monocyte, 3 microglia) in each platform. Data outputs were analyzed by two analysis methods each (RNA-Seq data: ALEXA-Seq and Cufflinks; microarray data: Partek and Aroma). All four lists were merged into a new high-confidence gene list of transcripts that were significantly differentially expressed (DE) in three out of the four analyses. In this dataset, we include exon expression data obtained from flow sorted mouse bone marrow monocytes and brainstem microglia.
Project description:Ischemic stroke recovery involves dynamic interactions between the central nervous system and infiltrating immune cells. Peripheral immune cells compete with resident microglia for spatial niches in the brain, but how modulating this balance affects recovery remains unclear. Here, we use PLX5622 to create spatial niches for peripheral immune cells, altering the competition between infiltrating immune cells and resident microglia in male mice following transient middle cerebral artery occlusion (tMCAO). We find that early-phase microglia attenuation promotes long-term functional recovery. This intervention amplifies a subset of monocyte-derived macrophages (RAMf) with reparative properties, characterized by high expression of GPNMB and CD63, enhanced lipid metabolism, and pro-angiogenic activity. Transplantation of RAMf into stroke-affected mice improves white matter integrity and vascular repair. We identify Mafb as the transcription factor regulating the reparative phenotype of RAMf. These findings highlight strategies to optimize immune cell dynamics for post-stroke rehabilitation.
Project description:Ischemic stroke recovery involves dynamic interactions between the central nervous system and infiltrating immune cells. Peripheral immune cells compete with resident microglia for spatial niches in the brain, but how modulating this balance affects recovery remains unclear. Here, we use PLX5622 to create spatial niches for peripheral immune cells, altering the competition between infiltrating immune cells and resident microglia in male mice following transient middle cerebral artery occlusion (tMCAO). We find that early-phase microglia attenuation promotes long-term functional recovery. This intervention amplifies a subset of monocyte-derived macrophages (RAMf) with reparative properties, characterized by high expression of GPNMB and CD63, enhanced lipid metabolism, and pro-angiogenic activity. Transplantation of RAMf into stroke-affected mice improves white matter integrity and vascular repair. We identify Mafb as the transcription factor regulating the reparative phenotype of RAMf. These findings highlight strategies to optimize immune cell dynamics for post-stroke rehabilitation.
Project description:Objective: Brain tumors (gliomas) contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM) biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome. Methods: High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO) database was queried to determine the prognostic value of identified microglia biomarkers in human GBM. Results: We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype. Significance: These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention.
Project description:Objective: Brain tumors (gliomas) contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM) biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome. Methods: High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO) database was queried to determine the prognostic value of identified microglia biomarkers in human GBM. Results: We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype. Significance: These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention.
Project description:RNA-Seq transcriptome comparison of the following cell populations (n=3-4 independent samples per cell population): a) CD11c-eYFP+ cells FACS sorted from brain of female adult mice 4 days after cerebral ischemia, b) CD11c-eYFP+ cells FACS sorted from brain of female parabiotic mice 4 days after cerebral ischemia c) CX3CR1+ microglia sorted from the ischemic brain of female CX3CR1CreERT2-ROSA26 tdTomato mice. Purpose: The goal of this study is to compare the transcriptome profile (RNA-Seq) of infiltrating cD11c-eYFP+ cells and microglia, both collected from ischemic brains of mice. Methods: RNA samples were obtained from FACS sorted eYFP+ cells of the ipsilateral brain hemisphere of CD11c-eYFP mice 4 days post-ischemia, the ipsilateral brain hemisphere of CD11c-eYFP/WT parabiotic mice 4 days post-ischemia, and from microglial cells sorted from the ipsilateral brain hemisphere of Cx3cr1CreERT2:ROSA26dTomato mice 4 days post-ischemia. NGS was performed (RNA-Seq) to compare the transcriptome of these populations. Results: the populations we compared clearly separated the differentially expressed genes in an unsupervised cluster analysis. 1509 genes were overrepresented in microglia and 1183 genes were overrepresented in CD11c-eYFP+ cells in the ischemic brain. Conclusions: Our study is the first comparative analysis of the transcriptomes of microglia and the infiltrating CD11c-eYFP+ cells derived from the ischemic brain of mice. The results show that the infiltrating CD11c-eYFP cell population in the ischemic brain tissue of parabiotic mice displays overrepresentation of genes typical of dendritic cells, immune functions, and ClassII antigen presentation, amongst others, that are not found represented in microglia.
Project description:Microglia isolated from glioma patients gain anti-tumor activities upon poly (I:C) stimulation. Expression profiles of human tumor-infiltrating microglia/macrophages before (untreated) and after treatment with poly (I:C) for 48h (induced). Tumor-infiltrating microglia/macrophages were isolated from freshly excised brain tumors
Project description:Infiltrating monocyte derived macrophages (MDMs) and resident microglia dominate CNS injury sites. We show that MDMs and microglia can directly communicate to modulate each other’s function. Also, the presence of MDMs in CNS injury suppresses microglia-mediated phagocytosis and inflammation. We suggest that macrophages infiltrating the injured CNS provide a mechanism to control acute and chronic microglia-mediated inflammation, which could otherwise drive damage in a variety of CNS conditions. To understand the global effects of macrophage communication to microglia, we transcriptionally profiled activated adult mouse microglia in the presence or absence of macrophages with and without an inflammatory stiumulus (LPS)
Project description:Microglia are resident CNS immune cells that are active sensors in healthy brain and versatile effectors under pathological conditions. Cerebral ischemia induces a robust neuroinflammatory response that includes marked changes in the gene expression and phenotypic profile of a variety of endogenous CNS cell types (astrocytes, neurons, microglia) as well as an influx of leukocytic cells (neutrophils, macrophages, T-cells) from the periphery. Many molecules and conditions can trigger a transformation of ârestingâ (or surveying) microglia to an âactivatedâ (alerted/reactive) state. Here we review recent developments in the literature that relate to microglial activation in the experimental setting of in vitro and in vivo ischemia. We also present new data from our own laboratory demonstrating the direct effects of in vitro ischemic conditions on the microglial phenotype and genomic profile. Emphasis is placed on the role of specific molecular signaling systems such as hypoxia inducible factor-1 (HIF-1) and toll-like receptor-4 (TLR4) in regulating the microglial response in this setting. We then review histological and recent novel radiological data that confirms a key role for microglial activation in the setting of ischemic stroke in humans. We discuss recent progress in the pharmacological and molecular targeting of microglia in acute ischemic stroke. Finally, we explore how recent studies on ischemic preconditioning have increased interest in preemptively targeting microglial activation in order to reduce stroke severity. 12 arrays, 4 experimental groups, 3 replicates in each group, CN is control normoxia, CH is control hypoxia, TN is TLR4 knockout normoxia, TH is TLR4 knockout hypoxia.