Project description:Biofilms are heterogeneous bacterial communities featured by high persister prevalence, responsible for antibiotic tolerance. However, the mechanisms underlying persister formation within biofilms remained ambiguous. Here, by developing and utilizing a ribosomal RNA depleted bacterial single-cell RNA-seq method, RiboD-mSPLiT, we resolved biofilm heterogeneity and discovered pdeI as a marker gene for persister subgroup within biofilms. Remarkably, our findings elucidated that PdeI upregulates cellular levels of c-di-GMP, which acts as an antitoxin to modulate the toxicity of toxin protein HipH. HipH localizes on nucleoid and functions as a potent DNase, inducing cells into a viable but non-culturable state. Conversely, c-di-GMP interacts with HipH, reducing its genotoxic effects and enabling cells to enter a persister state, resulting in drug tolerance. Importantly, by targeting this toxin-antitoxin system, we repressed drug tolerance in Uropathogenic Escherichia coli infections, offering promising therapeutic strategies against chronic and relapsing infections.
Project description:Biofilms are heterogeneous bacterial communities featured by high persister prevalence, responsible for antibiotic tolerance. However, the mechanisms underlying persister formation within biofilms remained ambiguous. Here, by developing and utilizing a ribosomal RNA depleted bacterial single-cell RNA-seq method, RiboD-mSPLiT, we resolved biofilm heterogeneity and discovered pdeI as a marker gene for persister subgroup within biofilms. Remarkably, our findings elucidated that PdeI upregulates cellular levels of c-di-GMP, which acts as an antitoxin to modulate the toxicity of toxin protein HipH. HipH localizes on nucleoid and functions as a potent DNase, inducing cells into a viable but non-culturable state. Conversely, c-di-GMP interacts with HipH, reducing its genotoxic effects and enabling cells to enter a persister state, resulting in drug tolerance. Importantly, by targeting this toxin-antitoxin system, we repressed drug tolerance in Uropathogenic Escherichia coli infections, offering promising therapeutic strategies against chronic and relapsing infections.
Project description:Biofilms are heterogeneous bacterial communities featured by high persister prevalence, responsible for antibiotic tolerance. However, the mechanisms underlying persister formation within biofilms remained ambiguous. Here, by developing and utilizing a ribosomal RNA depleted bacterial single-cell RNA-seq method, RiboD-mSPLiT, we resolved biofilm heterogeneity and discovered pdeI as a marker gene for persister subgroup within biofilms. Remarkably, our findings elucidated that PdeI upregulates cellular levels of c-di-GMP, which acts as an antitoxin to modulate the toxicity of toxin protein HipH. HipH localizes on nucleoid and functions as a potent DNase, inducing cells into a viable but non-culturable state. Conversely, c-di-GMP interacts with HipH, reducing its genotoxic effects and enabling cells to enter a persister state, resulting in drug tolerance. Importantly, by targeting this toxin-antitoxin system, we repressed drug tolerance in Uropathogenic Escherichia coli infections, offering promising therapeutic strategies against chronic and relapsing infections.
Project description:Biofilms are complex bacterial communities characterized by a high persister prevalence, which contributes to chronic and relapsing infections. Historically, persister formation in biofilms has been linked to constraints imposed by their dense structures. However, we observed an elevated persister frequency accompanying the stage of cell adhesion, marking the onset of biofilm development. Subsequent mechanistic studies uncovered a comparable type of toxin-antitoxin (TA) module (TA-like system) triggered by cell adhesion, which is responsible for this elevation. In this module, the toxin HipH acts as a genotoxic deoxyribonuclease, inducing DNA double strand breaks and genome instability. While the second messenger c-di-GMP functions as the antitoxin, exerting control over HipH expression and activity. The dynamic interplay between c-di-GMP and HipH levels emerges as a crucial determinant governing genome stability and persister generation within biofilms. These findings unveil a unique TA system, where small molecules act as the antitoxin, outlining a biofilm-specific molecular mechanism influencing genome stability and antibiotic persistence, with potential implications for treating biofilm infections.
Project description:Nitric oxide (NO) signaling in vertebrates is well characterized and involves the heme-nitric oxide/oxygen-binding (H-NOX) domain of soluble guanylate cyclase as a selective NO sensor. In contrast, little is known about the biological role or signaling output of bacterial H-NOX proteins. Here, we describe a molecular pathway for H-NOX signaling in Shewanella oneidensis. NO stimulates biofilm formation by controlling the levels of the bacterial secondary messenger cyclic diguanosine monophosphate (c-di-GMP). Phosphotransfer profiling was used to map the connectivity of a multicomponent signaling network that involves integration from two histidine kinases and branching to three response regulators. A feed-forward loop between response regulators with phosphodiesterase domains and phosphorylation-mediated activation intricately regulated c-di-GMP levels. Phenotypic characterization established a link between NO signaling and biofilm formation. Cellular adhesion may provide a protection mechanism for bacteria against reactive and damaging NO. These results are broadly applicable to H-NOX-mediated NO signaling in bacteria.
Project description:Bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) has been shown to be a global regulatory molecule that modulates the reciprocal responses of bacteria to activate either virulence pathways or biofilm formation. The mechanism of c-di-GMP signal transduction, including recognition of c-di-GMP and subsequent phenotypic regulation, remain largely uncharacterized. The key components of these regulatory pathways are the various adaptor proteins (c-di-GMP receptors). There is compelling evidence suggesting that, in addition to PilZ domains, there are other unidentified c-di-GMP receptors. Here we show that the PelD protein of Pseudomonas aeruginosa is a novel c-di-GMP receptor that mediates c-di-GMP regulation of PEL polysaccharide biosynthesis. Analysis of PelD orthologues identified a number of conserved residues that are required for c-di-GMP binding as well as synthesis of the PEL polysaccharide. Secondary structure similarities of PelD to the inhibitory site of diguanylate cyclase suggest that a common fold can act as a platform to bind c-di-GMP. The combination of a c-di-GMP binding site with a variety of output signalling motifs within one protein domain provides an explanation for the specificity for different cellular responses to this regulatory dinucleotide.