An FXR-Casp6 axis-mediated bile acid/gut microbiota sensing modulates neonatal β-cell mass expansion [scATAC-Seq]
Ontology highlight
ABSTRACT: Weaning diet switch brings gut microbiome maturation along with postnatal formation of sufficient matured β-cell mass. The matured gut microbiota elevated agonistic components of bile acid (BA) pool towards farnesoid X receptor (FXR) that was paralleling with the declined β-cell FXR expression. To investigate whether BA/FXR could link postnatal β-cell development and gut microbiota maturation, we forced persistent FXR expression in β cells (βFxrKI) and found decreased neonatal β-cell mass growth and increased glycemia in weaned βFxrKI mice, which could be partially recovered by ablating gut microbiota before weaning. scRNA and scATAC seq analysis showed different β cell growth trajectories with suppressed intrinsic cell proliferation and elevated cell apoptosis in βFxrKI. Caspase-6 was then identified as a dominant β-cell FXR downstream effector to mediate its regulation. The negative regulation of the FXR-Casp6 axis on postnatal β-cell mass expansion reflected a programmed cellular response to gut microbiota maturation in neonatal mice.
ORGANISM(S): Mus musculus
PROVIDER: GSE241406 | GEO | 2025/11/13
REPOSITORIES: GEO
ACCESS DATA