Project description:BackgroundAntitumor effect of chimeric antigen receptor (CAR)-T cells against solid tumors is limited due to various factors, such as low infiltration rate, poor expansion capacity, and exhaustion of T cells within the tumor. NR4A transcription factors have been shown to play important roles in T-cell exhaustion in mice. However, the precise contribution of each NR4a factor to human T-cell differentiation remains to be clarified.MethodsIn this study, we deleted NR4A family factors, NR4A1, NR4A2, and NR4A3, in human CAR-T cells recognizing human epidermal growth factor receptor type 2 (HER2) by using the CRISPR/Cas9 system. We induced T-cell exhaustion in these cells in vitro through repeated co-culturing of CAR-T cells with Her2+A549 lung adenocarcinoma cells and evaluated cell surface markers such as memory and exhaustion phenotypes, proliferative capacity, cytokine production and metabolic activity. We validated the antitumor toxicity of NR4A1/2/3 triple knockout (TKO) CAR-T cells in vivo by transferring CAR-T cells into A549 tumor-bearing immunodeficient mice.ResultsHuman NR4A-TKO CAR-T cells were resistant against exhaustion induced by repeated antigen stimulation in vitro, and maintained higher tumor-killing activity both in vitro and in vivo compared with control CAR-T cells. A comparison of the effectiveness of NR4A single, double, and TKOs demonstrated that triple KO was the most effective in avoiding exhaustion. Furthermore, a strong enhancement of antitumor effects by NR4A TKO was also observed in T cells from various donors including aged persons. Mechanistically, NR4A TKO CAR-T cells showed enhanced mitochondrial oxidative phosphorylation, therefore could persist for longer periods within the tumors.ConclusionsNR4A factors regulate CAR-T cell persistence and stemness through mitochondrial gene expression, therefore NR4A is a highly promising target for the generation of superior CAR-T cells against solid tumors.
Project description:In recent years, chimeric antigen receptor-modified T cell (CAR T cell) therapy has proven to be a promising approach against cancer. Nonetheless, this approach still faces multiple challenges in eliminating solid tumors, one of which being the immunosuppressive tumor microenvironment (TME). Here, we demonstrated that knocking out the endogenous TGF-β receptor II (TGFBR2) in CAR T cells with CRISPR/Cas9 technology could reduce the induced Treg conversion and prevent the exhaustion of CAR T ce lls. Meanwhile, TGFBR2-edited CAR T cells had better in vivo tumor elimination efficacy, both in cell line-derived xenograft and patient-derived xenograft solid tumor models, whether administered locally or systemically. In addition, the TGFBR2-edited CAR T cells could eliminate contralaterally reinoculated xenografts in mice effectively, with an increased proportion of memory subsets within circulating CAR T cells of central memory and effector memory subsets. In conclusion, we greatly improved the in vitro and in vivo function of CAR T cells in TGF-β-rich tumor environments by knocking out endogenous TGFBR2 and propose a potentially new method to improve the efficacy of CAR T cell therapy for treating solid tumors.
Project description:Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles.
Project description:The pro-inflammatory state of macrophages, underpinned by their metabolic condition, is essentially affecting their capacity of combating tumor cells. Here we find, via a pooled metabolic gene knockout CRISPR screen that KEAP1 and ACOD1 are strong regulators of the pro-inflammatory state in macrophages. We show that ACOD1 knockout macrophages, generated in our induced pluripotent stem cell-derived CAR-macrophage (CAR-iMAC) platform, are strongly and persistently polarized toward the pro-inflammatory state, which manifests in increased reactive oxygen species (ROS) production, more potent phagocytosis and enhanced cytotoxic functions against cancer cells in vitro. In ovarian or pancreatic cancer mouse models, ACOD1-depleted CAR-iMACs exhibit enhanced capacity in repressing tumors, leading to increased survival. In addition, combining ACOD1-depleted CAR-iMACs with immune checkpoint inhibitors (ICI), such as anti-CD47 or anti-PD1 antibodies, result in even stronger tumor suppressing effect. Mechanistically, the depletion of ACOD1 reduces levels of the immuno-metabolite itaconate, allowing KEAP1 to prevent NRF2 from entering the nucleus to activate an anti-inflammatory program. This study thus lays down the proof of principle for targeting ACOD1 in myeloid cells for cancer immunotherapy and introduces metabolically engineered human iPSC-derived CAR-iMACs cells with enhanced polarization and anti-tumor functions in adoptive cell transfer therapies.
Project description:Cytokines that stimulate T cell proliferation, such as interleukin (IL)-15, have been explored as a means of boosting the antitumor activity of chimeric antigen receptor (CAR) T cells. However, constitutive cytokine signaling in T cells and activation of bystander cells may cause toxicity. IL-23 is a two-subunit cytokine known to promote proliferation of memory T cells and T helper type 17 cells. We found that, upon T cell antigen receptor (TCR) stimulation, T cells upregulated the IL-23 receptor and the IL-23α p19 subunit, but not the p40 subunit. We engineered expression of the p40 subunit in T cells (p40-Td cells) and obtained selective proliferative activity in activated T cells via autocrine IL-23 signaling. In comparison to CAR T cells, p40-Td CAR T cells showed improved antitumor capacity in vitro, with increased granzyme B and decreased PD-1 expression. In two xenograft and two syngeneic solid tumor mouse models, p40-Td CAR T cells showed superior efficacy in comparison to CAR T cells and attenuated side effects in comparison to CAR T cells expressing IL-18 or IL-15.
Project description:The potential of macrophage-mediated phagocytosis as a cancer treatment is promising. Blocking the CD47-SIRPα interaction with a CD47-specific antibody significantly enhances macrophage phagocytosis. However, concerns regarding their toxicity to nontumor cells remain substantial. Here, we engineered chimeric antigen receptor macrophages (CAR-Ms) by fusing a humanized single-chain variable fragment with FcγRIIa and integrating short hairpin RNA to silence SIRPα, thereby disrupting the CD47-SIRPα signaling pathway. These modified CAR-shSIRPα-M cells exhibited an M1-like phenotype, superior phagocytic function, substantial cytotoxic effects on HER2-positive tumor cells, and the ability to eliminate patient-derived organoids. In vivo, CAR-M cells significantly inhibited tumor growth and prolonged survival in tumor-bearing mice. Notably, CAR-shSIRPα-M cells enhanced cytotoxic T-cell infiltration into tumors, thereby enhancing the antitumor response in both the humanized immune system mouse model and immunocompetent mice. Mechanistically, SIRPα inhibition activated inflammatory pathways and the cGAS-STING signaling cascade in CAR-M cells, leading to increased production of proinflammatory cytokines, reactive oxygen species, and nitric oxide, thereby enhancing their antitumor effects. These findings underscore the potential of SIRPα inhibition as a novel strategy to increase the antitumor efficacy of CAR-M cells in cancer immunotherapy, particularly against solid tumors.
Project description:Chimeric antigen receptor T cell therapy has become an important immunotherapeutic tool for overcoming cancers. However, the efficacy of CAR-T cell therapy in solid tumors is relatively poor due to the complexity of the tumor microenvironment and inhibitory immune checkpoints. TIGIT on the surface of T cells acts as an immune checkpoint by binding to CD155 on the tumor cells' surface, thereby inhibiting tumor cell killing. Blocking TIGIT/CD155 interactions is a promising approach in cancer immunotherapy. In this study, we generated anti-MLSN CAR-T cells in combination with anti-α-TIGIT for solid tumors treatment. The anti-α-TIGIT effectively enhanced the efficacy of anti-MLSN CAR-T cells on the killing of target cells in vitro. In addition, we genetically engineered anti-MSLN CAR-T cells with the capacity to constitutively produce TIGIT-blocking single-chain variable fragments. Our study demonstrated that blocking TIGIT significantly promoted cytokine release to augment the tumor-killing effect of MT CAR-T cells. Moreover, the self-delivery of TIGIT-blocking scFvs enhanced the infiltration and activation of MT CAR-T cells in the tumor microenvironments to achieve better tumor regression in vivo. These results suggest that blocking TIGIT effectively enhances the anti-tumor effect of CAR-T cells and suggest a promising strategy of combining CAR-T with immune checkpoints blockade in the treatment of solid tumors.