Transcriptomics

Dataset Information

0

Folate depletion induces erythroid differentiation through perturbation of de novo purine synthesis


ABSTRACT: Folate, an essential vitamin, is a one-carbon acceptor and donor in key metabolic reactions. Erythroid cells harbor a unique sensitivity to folate deprivation, as revealed by the primary pathological manifestation of nutritional folate deprivation: megaloblastic anemia. To study this metabolic sensitivity, we applied mild folate depletion to human and mouse erythroid cell lines, and primary murine erythroid progenitors. We show that folate depletion induces early blockade of purine synthesis and accumulation of the purine synthesis intermediate and signaling molecule, AICAR, followed by enhanced heme metabolism, hemoglobin synthesis, and erythroid differentiation. This is phenocopied by inhibition of folate metabolism using the SHMT1/2 inhibitor - SHIN1, and by AICAR supplementation. Mechanistically, the metabolically-driven differentiation is independent of nucleotide sensing through mTORC1 and AMPK, and is instead mediated by protein kinase C (PKC). Our findings suggest that folate deprivation-induced premature differentiation of erythroid progenitor cells is a molecular etiology to folate-deficiency induced anemia.

ORGANISM(S): Mus musculus Homo sapiens

PROVIDER: GSE245011 | GEO | 2024/02/07

REPOSITORIES: GEO

Similar Datasets

2020-11-01 | E-MTAB-9209 | biostudies-arrayexpress
2011-07-11 | GSE29324 | GEO
2009-10-01 | GSE14645 | GEO
2021-11-12 | GSE180356 | GEO
2022-08-09 | PXD030467 | Pride
2016-02-02 | GSE75876 | GEO
2016-02-02 | GSE75727 | GEO
2010-03-03 | E-GEOD-14645 | biostudies-arrayexpress
2013-12-01 | E-GEOD-46615 | biostudies-arrayexpress
2023-09-06 | GSE222368 | GEO