PUS10-induced tRNA fragmentation impacts retrotransposon-driven inflammation [RNA-seq]
Ontology highlight
ABSTRACT: Pseudouridine synthases (PUSs) catalyze the isomerization of uridine (U)-to-pseudouridine (Ψ) and have emerging roles in development and disease. How PUSs adapt gene expression under stress remains mostly unexplored. We identify an unconventional role for the Ψ “writer” PUS10 impacting intracellular innate immunity. Using Pus10 knockout mice, we uncover cell-intrinsic upregulation of interferon (IFN) signaling, conferring resistance to inflammation in vivo. Pus10 loss alters tRNA-derived small RNAs (tdRs) abundance, perturbing translation and endogenous retroelements expression. These alterations promote proinflammatory RNA-DNA hybrids accumulation, potentially activating cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING). Supplementation with selected tdR pools partly rescues these effects through interactions with RNA processing factors that modulate immune responses, revealing a regulatory circuit that counteracts cell-intrinsic inflammation. By extension, we define a PUS10-specific molecular fingerprint linking its dysregulation to human autoimmune disorders, including inflammatory bowel diseases. Collectively, these findings establish PUS10 as a viral mimicry modulator, with broad implications for innate immune homeostasis and autoimmunity.
ORGANISM(S): Mus musculus
PROVIDER: GSE248955 | GEO | 2025/06/13
REPOSITORIES: GEO
ACCESS DATA