Genomics

Dataset Information

0

Comparative Multi-omic Mapping of Human Pancreatic Islet Endoplasmic Reticulum and Cytokine Stress Responses Provide Insights into Type 2 Diabetes Genetics [ATAC-seq]


ABSTRACT: Endoplasmic reticulum (ER) and inflammatory stress responses are two pathophysiologic factors contributing to islet dysfunction and failure in Type 2 Diabetes (T2D). However, how human islet cells respond to these stressors and whether T2D-associated genetic variants modulate these responses is unknown. To fill this knowledge gap, we profiled transcriptional (RNA-seq) and epigenetic (ATAC-seq) remodeling in human islets exposed to ex vivo ER (thapsigargin) or inflammatory (IL-1β+IFN-γ) stress. 5,427 genes (~32%) were associated with stress responses; most were stressor-specific, including upregulation of genes mediating unfolded protein response (e.g. DDIT3, ATF4) and NFKB signaling (e.g. NFKB1, NFKBIA) in ER stress and inflammation respectively. Islet single-cell RNA-seq profiling revealed strong but heterogeneous beta cell ER stress responses, including a distinct beta cell subset that highly expressed apoptotic genes. Epigenetic profiling uncovered 14,968 stress-responsive cis-regulatory elements (CREs; ~14%), the majority of which were stressor-specific, and revealed increased accessibility at binding sites of transcription factors that were induced upon stress (e.g. ATF4 for ER stress, IRF8 for inflammation). Seventy-six stress-responsive CREs overlapped known T2D-associated variants, including 20 residing within CREs that were more accessible upon ER stress. Among these, we linked the rs6917676 T2D risk allele (T) to increased in vivo accessibility of an islet ER stress-responsive CRE and allele-specific beta-cell nuclear factor binding in vitro. We showed that MAP3K5, the only ER stress-responsive gene in this locus, promotes beta cell apoptosis. Consistent with its pro-apoptotic and putative diabetogenic roles, MAP3K5 expression inversely correlated with beta cell abundance in human islets and was upregulated in beta cells from T2D donors. Together, this study provides new genome-wide insights into human islet stress responses and putative mechanisms of T2D genetic variants.

ORGANISM(S): Homo sapiens

PROVIDER: GSE251910 | GEO | 2024/01/15

REPOSITORIES: GEO

Similar Datasets

2024-01-15 | GSE251912 | GEO
2024-01-15 | GSE251911 | GEO
2020-10-24 | GSE159984 | GEO
2013-06-07 | E-GEOD-47720 | biostudies-arrayexpress
2019-01-02 | GSE112002 | GEO
2021-12-29 | GSE89138 | GEO
2023-09-25 | GSE199534 | GEO
2015-06-01 | GSE62868 | GEO
2021-03-20 | GSE167250 | GEO
2020-10-01 | GSE154126 | GEO