Genomics

Dataset Information

0

Effects of the treatment with pegIFNa, Azacytidine or pegIFNa+Azacytidine in LT-HSCs from JAK2-V617F MPN mice or JAK2-V617F;Dnmt3a-KO MPN mice.


ABSTRACT: Pegylated interferon alpha (pegIFNα) can induce molecular remissions in JAK2-V617F-positive myeloproliferative neoplasms (MPN) patients by targeting long-term hematopoietic stem cells (LT-HSCs). Additional somatic mutations in genes regulating LT-HSC self-renewal, such as DNMT3A, have been reported to have poorer responses to pegIFNα. We investigated if DNMT3A loss leads to alterations in JAK2-V617F LT-HSCs functions conferring resistance to pegIFNα treatment in a mouse model of MPN and in hematopoietic progenitors from MPN patients. Long-term treatment with pegIFNα normalized blood parameters, reduced splenomegaly and JAK2-V617F-chimerism in single-mutant JAK2-V617F (VF) mice. However, pegIFNα in VF;Dnmt3aΔ/Δ (VF;DmΔ/Δ) mice worsened splenomegaly and failed to reduce JAK2-V617F-chimerism. Furthermore, LT-HSCs from VF;DmΔ/Δ mice compared to VF were less prone to accumulate DNA damage and exit dormancy upon pegIFNα treatment. RNA-sequencing showed that IFNα induced stronger upregulation of inflammatory pathways in LT-HSCs from VF;DmΔ/Δ compared to VF mice, indicating that the resistance of VF;DmΔ/Δ LT-HSC was not due to failure in IFNα signaling. Transplantations of bone marrow from pegIFNα treated VF;DmΔ/Δ mice gave rise to more aggressive disease in secondary and tertiary recipients. Liquid cultures of hematopoietic progenitors from MPN patients with JAK2-V617F and DNMT3A mutation showed increased percentages of JAK2-V617F-positive colonies upon IFNα exposure, whereas in patients with JAK2-V617F alone the percentages of JAK2-V617F-positive colonies decreased or remained unchanged. PegIFNα combined with 5-azacytidine only partially overcame resistance in VF;DmΔ/Δ mice. However, this combination strongly decreased the JAK2-mutant allele burden in mice carrying VF mutation only, showing potential to inflict substantial damage preferentially to the JAK2-mutant clone.

ORGANISM(S): Mus musculus

PROVIDER: GSE255253 | GEO | 2024/03/29

REPOSITORIES: GEO

Similar Datasets

2024-01-29 | GSE250507 | GEO
2024-03-29 | GSE225918 | GEO
2021-02-22 | GSE111410 | GEO
2013-01-29 | E-GEOD-29655 | biostudies-arrayexpress
2013-10-31 | E-GEOD-34239 | biostudies-arrayexpress
2013-01-29 | GSE29655 | GEO
2018-12-01 | E-MTAB-5028 | biostudies-arrayexpress
2014-03-12 | E-GEOD-55798 | biostudies-arrayexpress
2014-03-12 | E-GEOD-55801 | biostudies-arrayexpress
2024-01-25 | GSE228092 | GEO