Under pressure: Pressure loads can modify endothelial cell flow responses
Ontology highlight
ABSTRACT: Blood flow within the vasculature is a critical determinant of endothelial cell (EC) identity and functionality, yet the intricate interplay of various hemodynamic forces and their collective impact on endothelial and vascular responses are not fully understood. Specifically, the role of hydrostatic pressure in the context of flow response is understudied, despite its known significance in vascular development and disease progression. To address this gap, we developed in vitro models to investigate how pressure influences EC responses to flow. Our study demonstrates that elevated pressure conditions significantly modify shear-induced flow alignment and increase endothelial cell density, a phenomenon often observed in vascular diseases. Utilizing both bulk and single-cell RNA sequencing, we found that while flow is the primary driver of transcriptional changes from static conditions, pressure distinctly modulates this flow response by upregulating gene sets linked to arterial cell phenotypes. When compared to early vascular development stages, pressure was notably associated with gene sets that promote the formation of early hemogenic endothelial cells. Our findings emphasize the necessity of an integrative approach to endothelial cell mechanotransduction, one that encompasses the effects induced by pressure alongside other hemodynamic forces.
ORGANISM(S): Homo sapiens
PROVIDER: GSE260600 | GEO | 2025/12/31
REPOSITORIES: GEO
ACCESS DATA