Unknown

Dataset Information

0

Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells (ChIP-chip and MeDIP-chip)


ABSTRACT: Epigenetic modification of the mammalian genome by DNA methylation (5-methylcytosine) has a profound impact on chromatin structure, gene expression and maintenance of cellular identity. Recent demonstration that members of the Ten-eleven translocation (Tet) family proteins can convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) raised the possibility that Tet proteins are capable of establishing a distinct epigenetic state. We have recently demonstrated that Tet1 is specifically expressed in murine embryonic stem (ES) cells and is required for ES cell self-renewal and maintenance. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), here we show that Tet1 is preferentially bound to CpG-rich sequences at promoters of both transcriptionally active and Polycomb-repressed genes. Despite a general increase in levels of DNA methylation at Tet1 binding-sites, Tet1 depletion does not lead to down-regulation of all the Tet1 targets. Interestingly, while Tet1-mediated promoter hypomethylation is required for maintaining the expression of a group of transcriptionally active genes, it is also required for repression of Polycomb-targeted developmental regulators. Tet1 contributes to silencing of this group of genes by facilitating recruitment of PRC2 to CpG-rich gene promoters. Thus, our study not only establishes a role for Tet1 in modulating DNA methylation levels at CpG-rich promoters, but also reveals a dual function of Tet1 in promoting transcription of pluripotency factors as well as participating in the repression of Polycomb-targeted developmental regulators.

ORGANISM(S): Mus musculus

PROVIDER: GSE26827 | GEO | 2011/03/30

SECONDARY ACCESSION(S): PRJNA142015

REPOSITORIES: GEO

Similar Datasets

2011-03-30 | E-GEOD-26832 | biostudies-arrayexpress
2011-03-30 | E-GEOD-26830 | biostudies-arrayexpress
2011-03-30 | E-GEOD-26827 | biostudies-arrayexpress
2011-03-30 | GSE26832 | GEO
2011-03-30 | GSE26830 | GEO
2022-08-11 | PXD028566 | Pride
2014-06-14 | E-GEOD-51902 | biostudies-arrayexpress
2023-02-06 | PXD039719 | Pride
2011-04-21 | E-GEOD-28533 | biostudies-arrayexpress
2022-08-31 | PXD028850 | Pride