Transcriptomics

Dataset Information

0

Hepatic PKA Mediates the Liver and Pancreatic Alpha-Cell Crosstalk


ABSTRACT: Objective: Activation of the liver glucagon receptor (GCGR) promotes amino acid catabolism, which provides substrate for glucose production. Inhibition of the receptor downregulates hepatic amino acid catabolism, leading to increases in circulating amino acid levels. Amino acids serve as a potent growth factor for pancreatic alpha cells, where glucagon is produced. Thus, GCGR inhibition-induced hyperaminoacidemia causes alpha cell hyperplasia. This liver-alpha cell feedback loop, mediated by glucagon and amino acids, has been demonstrated across species, including humans. This study was designed to delineate hepatic signaling molecules that lie downstream of GCGR and mediate the liver-alpha cell loop. Methods: We used AAV8-shRNA to knock down GCGR signaling molecules, the G-coupled protein GNAS and two GNAS downstream effectors, PKA and EPAC2 (RAPGEF4), in the liver of diet-induced obese (DIO) mice. We monitored plasma amino acid and blood glucose levels and conducted pancreas histology to derive alpha and beta cell mass. We performed liver RNA-sequencing to assess expression of glucose and amino acid metabolism genes. To examine the contribution of PKA in changes associated with GCGR inhibition, we knocked down PRKAR1A, a major inhibitory subunit of PKA, to activate PKA in liver of mice administered with GCGR blocking or control antibody. Results: Comparable suppression of hepatic amino acid catabolism gene expressions, increases in plasma amino acid levels and alpha cell hyperplasia were observed in mice with hepatic knockdown of GCGR, GNAS, and PKA. Hepatic EPAC2 knockdown did not affect amino acid metabolism or alpha cell mass in mice. Mice with hepatic PKA activation alone developed hypoaminoacidemia, hypoglucagonemia and reduced alpha cell mass. Administering GCGR blocking antibody to the mice did not alter the abnormalities. Conclusions: Hepatic PKA activation in mice fully overrides the effect of GCGR inhibition on amino acids and alpha cells. In the liver, GCGR signals through PKA to control amino acid metabolism and pancreatic alpha cell mass. Hepatic PKA plays a critical role in the liver-alpha cell loop, mediated by circulating glucagon and amino acids.

ORGANISM(S): Mus musculus

PROVIDER: GSE268864 | GEO | 2025/05/30

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2025-02-11 | GSE253271 | GEO
2017-05-01 | GSE89636 | GEO
2022-12-09 | GSE211105 | GEO
2017-03-31 | GSE89035 | GEO
2022-10-26 | GSE179894 | GEO
2017-06-21 | GSE90116 | GEO
2024-06-11 | GSE243681 | GEO
2022-10-11 | E-MTAB-12060 | biostudies-arrayexpress
2025-07-18 | GSE253774 | GEO
2019-08-16 | GSE135881 | GEO