MicroRNA-1 Regulates Metabolic Flexibility by Programming Adult Skeletal Muscle Pyruvate Metabolism
Ontology highlight
ABSTRACT: Metabolic flexibility refers to the ability of a tissue to adjust cellular fuel choice in response to conditional changes in metabolic demand and activity. A loss of metabolic flexibility is now recognized as a defining feature of various diseases and cellular dysfunction. In this study, using an inducible, skeletal muscle-specific knockout (KO) mouse, we found microRNA-1 (miR-1), the most abundant microRNA (miRNA) in skeletal muscle, was necessary to maintain whole-body metabolic flexibility. This was demonstrated by a loss of diurnal oscillations in whole-body respiratory exchange ratio and higher fasting blood glucose in miR-1 KO mice. Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) and RNA-seq analyses identified, for the first time, bona fide miR-1 target genes in adult skeletal muscle that regulated pyruvate metabolism. Comprehensive bioenergetic phenotyping combined with skeletal muscle proteomics and metabolomics showed that miR-1 was necessary to maintain metabolic flexibility by regulating pyruvate metabolism through mechanisms including the alternative splicing of pyruvate kinase (Pkm). The loss of metabolic flexibility in the miR-1 KO mouse was rescued by pharmacological inhibition of the miR-1 target, monocarboxylate transporter 4 (MCT4), which redirects glycolytic carbon flux toward oxidation. The maintenance of metabolic flexibility by miR-1 was necessary for sustained endurance activity in mice and in C. elegans. The physiological down-regulation of miR-1 in response to a hypertrophic stimulus in both humans and mice caused a similar metabolic reprogramming necessary for muscle cell growth. Taken together, these data identify a novel post-transcriptional mechanism of whole-body metabolism regulation mediated by a tissue-specific miRNA.
ORGANISM(S): Mus musculus
PROVIDER: GSE274378 | GEO | 2024/08/09
REPOSITORIES: GEO
ACCESS DATA