Transcriptomics

Dataset Information

0

TagF1-F2 and dlt mutant study


ABSTRACT: Several strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of specific cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA) in probiotic-host interactions remains obscure. Through genome mining and mutagenesis we constructed derivatives of L. plantarum WCFS1 that synthesize alternative WTA variants. The mutants were shown to completely lack WTA, or produce WTA and LTA that lack D-Ala substitution, or ribitol-backbone WTA instead of the wild-type glycerol-containing backbone. Transcriptome analysis revealed the genetic determinants involved in backbone switching. Human dendritic cells secreted drastically decreased levels of pro-inflammatory cytokines after stimulation with the WTA mutants, and indicated LTA contributes to TLR-2/6 signalling, whereas WTA attenuates TLR-2 and TLR-1/2 signalling in a backbone-alditol dependent manner. Overall, the engineering of WTA and its consequences for immune system interaction advances our molecular understanding of host-microbe communication, and underpins the strain-specificity of probiotics.

ORGANISM(S): Lactiplantibacillus plantarum WCFS1 Lactiplantibacillus plantarum

PROVIDER: GSE27683 | GEO | 2011/05/01

SECONDARY ACCESSION(S): PRJNA138159

REPOSITORIES: GEO

Similar Datasets

2011-05-01 | E-GEOD-27683 | biostudies-arrayexpress
2008-03-01 | GSE7373 | GEO
2016-10-19 | GSE87368 | GEO
2012-01-12 | GSE34441 | GEO
2018-06-18 | GSE98353 | GEO
2017-02-09 | GSE74988 | GEO
2012-01-12 | E-GEOD-34441 | biostudies-arrayexpress
2008-08-01 | GSE11383 | GEO
2021-12-17 | GSE140702 | GEO
2015-11-21 | E-GEOD-75240 | biostudies-arrayexpress