Genomics

Dataset Information

0

Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation


ABSTRACT: Recurrent somatic mutations in TET2 and in other genes that regulate the epigenetic state have been identified in patients with myeloid malignancies and in other cancers. However, the in vivo effects of Tet2 loss have not been delineated. We report here that Tet2 loss leads to increased stem-cell self-renewal and to progressive stem cell expansion. Consistent with human mutational data, Tet2 loss leads to myeloproliferation in vivo, notable for splenomegaly and monocytic proliferation. In addition, haploinsufficiency for Tet2 confers increased self-renewal and myeloproliferation, suggesting that the monoallelic TET2 mutations found in most TET2-mutant leukemia patients contribute to myeloid transformation. This work demonstrates that absent or reduced Tet2 function leads to enhanced stem cell function in vivo and to myeloid transformation. These studies show that a ubiquitin ligase-substrate pair can orchestrate the molecular program of HSC differentitiation

ORGANISM(S): Mus musculus

PROVIDER: GSE27816 | GEO | 2011/07/01

SECONDARY ACCESSION(S): PRJNA137933

REPOSITORIES: GEO

Similar Datasets

2011-07-01 | E-GEOD-27816 | biostudies-arrayexpress
| PRJNA137933 | ENA
2017-10-01 | GSE88842 | GEO
2017-10-01 | GSE88841 | GEO
2018-03-15 | GSE99333 | GEO
2023-10-27 | GSE210025 | GEO
2023-10-27 | GSE209994 | GEO
2022-01-07 | GSE192988 | GEO
2022-01-07 | GSE192992 | GEO
2022-11-30 | GSE208437 | GEO