Transcriptomics

Dataset Information

0

Metabolic reprogramming by PRDM16 drives cytarabine resistance in acute myeloid leukemia


ABSTRACT: Acute myeloid leukemia (AML) patients with high PRDM16 expression frequently experience induction failure and have a poor prognosis. However, the molecular mechanisms underlying these clinical features are elusive. We found that murine AML cells transformed by MLL::AF9 fusion and oncogenic short-isoform Prdm16 overexpression (hereafter, MF9/sPrdm16) exhibited resistance to cytarabine (AraC), but not to anthracycline, both in vitro and in vivo. Intriguingly, MF9/sPrdm16 cells displayed a gene expression signature of high oxidative phosphorylation (OxPHOS) and increased mitochondrial respiration. The inhibition of mitochondrial respiration with metformin or tigecycline abrogated AraC resistance in MF9/sPrdm16 cells via an energetic shift toward low OxPHOS status. Furthermore, sPrdm16 upregulated c-Myc and the glutamine transporter Slc1a5, activating TCA cycle and glutaminolysis. Of note, both OxPHOS and MYC-target gene signatures were significantly enriched in AML patient samples with high PRDM16 expression. Together, we showed that PRDM16 overexpression activates mitochondrial respiration through metabolic reprogramming via c-MYC-SLC1A5-Glutaminolysis axis, thereby conferring AraC resistance on AML cells. These results suggest that targeting mitochondrial respiration might be a novel treatment strategy to overcome chemoresistance in AML patients with high PRDM16 expression.

ORGANISM(S): Mus musculus

PROVIDER: GSE280735 | GEO | 2025/12/03

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2021-11-12 | GSE183329 | GEO
2017-06-25 | GSE97631 | GEO
2017-06-25 | GSE97393 | GEO
2025-04-02 | PXD051129 | JPOST Repository
2025-09-30 | PXD069373 |
2020-09-29 | GSE136551 | GEO
2018-10-01 | E-MTAB-6150 | biostudies-arrayexpress
2025-04-13 | GSE292091 | GEO
2025-08-25 | GSE296181 | GEO
2023-08-11 | GSE220133 | GEO